SolidWorks®

SolidWorks Teacher Guide and Student Courseware

SolidWorks Corporation 300 Baker Avenue Concord, Massachusetts 01742 USA Phone +1-800-693-9000 Outside the U.S.: +1-978-371-5011 Fax: +1-978-371-7303 Email: info@solidworks.com Web: http://www.solidworks.com/education © 1995-2005, SolidWorks Corporation 300 Baker Avenue Concord, Massachusetts 01742 USA All Rights Reserved

U.S. Patents 5,815,154; 6,219,049; 6,219,055

SolidWorks Corporation is a Dassault Systemes S.A. (Nasdaq:DASTY) company.

The information and the software discussed in this document are subject to change without notice and should not be considered commitments by SolidWorks Corporation.

No material may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose without the express written permission of SolidWorks Corporation.

The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of this license. All warranties given by SolidWorks Corporation as to the software and documentation are set forth in the SolidWorks Corporation License and Subscription Service Agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of such warranties.

SolidWorks® is a registered trademark of SolidWorks Corporation.

SolidWorks 2005 is a product name of SolidWorks Corporation.

FeatureManager® is a jointly owned registered trademark of SolidWorks Corporation.

Feature PaletteTM, PhotoWorksTM, and PDMWorksTM are trademarks of SolidWorks Corporation.

ACIS® is a registered trademark of Spatial Corporation.

FeatureWorks® is a registered trademark of Geometric Software Solutions Co. Limited.

GLOBEtrotter® and FLEXIm® are registered trademarks of Globetrotter Software, Inc.

Other brand or product names are trademarks or registered trademarks of their respective holders.

COMMERCIAL COMPUTER SOFTWARE - PROPRIETARY

U.S. Government Restricted Rights. Use, duplication, or disclosure by the government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer Software - Restricted Rights), DFARS 227.7202 (Commercial Computer Software and Commercial Computer Software Documentation), and in the license agreement, as applicable.

Contractor/Manufacturer:

SolidWorks Corporation, 300 Baker Avenue, Concord, Massachusetts 01742 USA

Portions of this software are copyrighted by and are the property of Electronic Data Systems Corporation or its subsidiaries, copyright© 2005

Portions of this software © 1999, 2002-2005 ComponentOne

Portions of this software @ 1990-2005 D-Cubed Limited.

Portions of this product are distributed under license from DC Micro Development, Copyright © 1994-2002 DC Micro Development, Inc. All rights reserved

 $\label{eq:portions} \ensuremath{\mathbb{C}} \ensuremath{\mathsf{e}} \ensurem$

Portions of this software © 1998-2005 Geometric Software Solutions Co. Limited.

Portions of this software © 1986-2005

mental images GmbH & Co. KG Portions of this software © 1996

Microsoft Corporation. All Rights Reserved.

Portions of this software © 2001, SIMULOG.

Portions of this software © 1995-2005 Spatial Corporation.

Portions of this software © 2005, Structural Research & Analysis Corp.

Research & Anarysis Corp.

Portions of this software $\ensuremath{\mathbb{O}}$ 1997-2005 Tech Soft America.

Portions of this software © 1999-2005 Viewpoint Corporation.

Portions of this software $\ensuremath{\mathbb{C}}$ 1994-2005, Visual Kinematics, Inc.

All Rights Reserved

Document Number: PME0213-ENG

Introduction	vii
Lesson 1: Using the Interface	1
Lesson 2: Basic Functionality	17
Lesson 3: The 40-Minute Running Start	45
Lesson 4: Assembly Basics	63
Lesson 5: Toolbox Basics	93
Lesson 6: Drawing Basics	115
Lesson 7: eDrawing Basics	143
Lesson 8: Design Tables	165
Lesson 9: Revolve and Sweep Features	187
Lesson 10: Loft Features	211
Lesson 11: Visualization	229
Glossary	251

Lesson 3: The 40-Minute Running Start

Goals of This Lesson

□ Students will be able to create and modify the following part:

Before Beginning This Lesson

□ Complete the previous lesson — Basic Functionality.

Resources for This Lesson

This lesson plan corresponds to *Lesson 1 – Parts* in the SolidWorks Online Tutorials. For more information about the Online Tutorials, See "Online Tutorials" on page v.

Review of Lesson 2: Basic Functionality

Questions for Discussion

- 1 A SolidWorks 3D model consists of three documents. Name the three documents. <u>Answer:</u> Part, Assembly and Drawing.
- Parts are built from features. What are features?
 <u>Answer:</u> Features are the shapes (bosses, cuts and holes) and the operations (fillets, chamfers and shells) that you use to build a part.
- 3 Name the features that are used to create the box in Lesson 1.

<u>Answer:</u> Extruded Boss, Fillet, Shell, and Extruded Cut.

- 4 What is the base feature of the box? <u>Answer:</u> The base feature is the first feature of the box. The base feature is the foundation of the part. The base feature geometry for the box is an extrusion. The extrusion is named Extrude1. The base feature represents the general shape of the box.
 - Use a cardboard box to illustrate the Base feature.
- 5 Why did you use the Fillet feature?Answer: The fillet feature rounds the

3. Shell Feature

4. Cut Feature

sharp edges and faces. The result of using the fillet feature created the rounded edges of the box.

6 Why did you use the Shell feature?

<u>Answer:</u> The shell feature removes material. The result of using the shell feature created a hollow block from a solid block.

7 How do you create the Base feature?

Answer: To create a solid Base feature:

- Sketch a rectangular profile on a flat 2D plane.
- Extrude the profile perpendicular to the sketch plane.
- **8** What would have happened if the Shell feature was created before the Fillet feature?

<u>Answer:</u> The inside corners of the box would be sharp instead of rounded.

Outline of Lesson 3

- □ In Class Discussion Base Features
- □ Active Learning Exercise Create a Part
- □ Exercises and Projects Modifying a Part
 - Converting Dimensions
 - Calculating the Modification
 - Modifying the Part
 - Calculating Material Volume
 - Calculating the Volume of the Base feature
- □ Exercises and Projects Creating a CD Jewel Case and Storage Box
 - Measuring the CD Jewel Case
 - Rough Sketch of the Jewel Case
 - Calculate the Overall Case Capacity
 - Calculate the Outside Measurements of the CD Storage Box
 - Creating the CD Jewel Case and Storage Box
- □ More to Explore Modeling More Parts
- □ Lesson Summary

In Class Discussion — Base Features

- □ Select a simple object in the classroom, a piece of chalk or board eraser.
- □ Ask the students to describe the Base feature of these objects.
- □ How would you create the additional features for these objects?

Answer

Chalk:

- □ Sketch a circular 2D profile.
- □ Extrude the 2D profile. The extruded 2D profile creates the Base feature. The Base feature is named Extrude1.
- □ Select the circular edge on the Base feature. Create a Fillet feature. The Fillet feature removes sharp edges.

Note: You would probably not want to use the Fillet feature for a new piece of chalk.

Board Eraser:

- □ Sketch a rectangular 2D profile.
- □ Extrude the 2D sketch. This creates the Base feature.
- □ Select the 4 corners on the Base feature. Create a Fillet feature to remove the sharp edges.

Active Learning Exercise — Create a Part

Follow the instructions in Lesson 1 - Parts of the SolidWorks Online Tutorial. In this lesson you will create the part shown at the right. The part name is Tutor1.sldprt.

5 Minute Assessment – Answer Key

- 1 What features did you use to create Tutor1? <u>Answer:</u> Extruded Boss, Fillet, Shell and Extruded Cut.
- What does the Fillet feature do?
 <u>Answer:</u> The Fillet feature rounds sharp edges and faces
- What does the Shell feature do?<u>Answer:</u> The Shell feature removes material from the selected face.
- 4 Name three view commands in SolidWorks. <u>Answer:</u> Zoom to Fit, Rotate View, and Pan.
- 5 Where are the display buttons located?<u>Answer:</u> The display buttons are located on the View toolbar.
- 6 Name the three SolidWorks default planes. Answer: Front, Top, and Right.
- 7 The SolidWorks default planes correspond to what principle drawing views? <u>Answer:</u>
 - Front = Front or Back view
 - Top = Top or Bottom view
 - Right = Right or Left view
- 8 True or False. In a fully defined sketch, geometry is displayed in black. <u>Answer:</u> True.
- 9 True or False. It is possible to make a feature using an over defined sketch. <u>Answer:</u> False.
- Name the primary drawing views used to display a model.<u>Answer:</u> Top, Front, Right and Isometric views.

Exercises and Projects — Modifying the Part

Task 1— Converting Dimensions

The design for Tutor1 was created in Europe. Tutor1 will be manufactured in the US. Convert the overall dimensions of Tutor1 from millimeters to inches.

Given:

- \Box Conversion: 25.4 mm = 1 inch
- \Box Base width = 120 mm
- \Box Base height = 120 mm
- \Box Base depth = 50 mm
- \Box Boss depth = 25 mm

Answer:

- □ Overall depth = Base depth + Boss depth Overall depth = 1.97" + 0.98" = 2.95"
- □ Overall dimensions = Base width **x** Base height **x** Depth Overall dimensions = 4.72" **x** 4.72" **x** 2.95"

In Class Demonstration:

SolidWorks supports both metric and English units. Demonstrate the software conversion from metric to English units.

- 1 Click **Tools**, **Options**.
- 2 Click the **Document Properties** tab.
- 3 Click Units.
- 4 Click **Inches** from the **Linear units** list. Click **OK**.
- **5** Double-click the Tutor1 features to display the dimensions.
 - Base width = 4.72"
 - Base height = 4.72"
 - Base depth = 1.97"
 - Boss depth = 0.98"

Task 2— Calculating the Modification

The current overall depth of Tutor1 is 75 mm. Your customer requires a design change. The new required overall depth is 100 mm. The Base depth must remain fixed at 50 mm. Calculate the new Boss depth.

Given:

- \Box New overall depth = 100 mm
- $\Box \text{ Base depth} = 50 \text{ mm}$

Answer:

Overall depth = Base depth + Boss depth
 Boss depth = Overall depth - Base depth
 Boss depth = 100mm - 50 mm
 Boss depth = 50 mm

Task 3— Modifying the Part

Using SolidWorks, modify Tutor1 to meet the customer's requirements. Change the depth of the Boss feature such that the overall depth of the part equals 100 mm. Save the modified part under a different name.

Answer:

1 Double-click on the Extrude2 feature.

- 2 Double-click on the **25 mm** depth dimension.
- 3 In the **Modify** dialog, enter the value **50mm**.
- 4 Press Enter.

5 Click Rebuild.

💽 🕝 🤌 📂 🔜-

•

? ×

Save -

Cancel

References...

6 Click File, Save As to create block100.

When you use **File**, **Save As**, you save a copy of the document with a new name or path. You can create a new folder in the **Save As** dialog box if needed. After you use **File**, **Save As**, you are working in the *new* document. The original document is closed without saving.

If you click the $\ensuremath{\text{Save}}$ as $\ensuremath{\text{copy}}$

check box you will save a copy

of the document, with a new name, *without* replacing the active document. You continue to work in the original document.

ave As

à

Save in: 🗀 Lesson03

block100

Save as copy
 Save eDrawings data

Save as type: Part (*.prt;*.sldprt)

~\$Tutor1.SLDPRT Utor1.SLDPRT

File <u>n</u>ame:

Description:

Task 4— Calculating Material Volume

Material volume is an important calculation for designing and manufacturing parts. Calculate the volume of the Base feature in mm³ for Tutor1.

Answer:

□ Volume = Width **x** Height **x** Depth Volume = 120mm **x** 120mm **x** 50mm = 720,000 mm³

Task 5— Calculating the Volume of the Base feature

Calculate the volume of the Base feature in cm^3 .

Given:

 $\Box 1 cm = 10 mm$

Answer:

□ Volume = Width **x** Height **x** Depth Volume = $12 \text{ cm } \text{ x} 12 \text{ cm } \text{ x} 5 \text{ cm} = 720 \text{ cm}^3$

Exercises and Projects — Creating a CD Jewel Case and Storage Box

You are part of a design team. The project manager has provided the following design criteria for a CD storage box:

- □ The CD storage box is constructed of a polymer (plastic) material.
- □ The storage box must hold 25 CD jewel cases.
- □ The title of the CD must be visible when the jewel case is positioned in the storage box.
- \Box The wall thickness of the storage box is 1cm.
- On each side of the storage box, there must be 1cm clearance between the jewel case and the inside of the box.
- □ There must be 2cm clearance between the top of the CD cases and the inside of the storage box.

□ There must be 2cm clearance between the jewel cases and the front of the storage box.

Task 1 — Measuring the CD Jewel Case

Measure the width, height, and depth of one CD jewel case. What are the measurements in centimeters?

Answer:

Approximately 14.2cm x 12.4cm x 1cm

Task 2— Rough Sketch of the Jewel Case

Using paper and pencil, manually sketch the CD jewel case. Label the dimensions.

Task 3 — Calculate the Overall Case Capacity

Calculate the overall size of 25 stacked CD jewel cases. Record the overall width, height and depth.

Given:

- \Box CD jewel case width = 1cm
- \Box CD jewel case height = 12.4cm
- \Box CD jewel case depth = 14.2cm

Answer:

- \Box Overall width of 25 CD jewel cases = 25 x 1cm = 25cm
- □ Overall size for 25 CD jewel cases = Overall width **x** CD case height **x** CD case depth Overall size for 25 CD jewel cases = 25cm **x** 12.4cm **x** 14.2cm

Task 4— Calculate the Outside Measurements of the CD Storage Box

Calculate the overall *outside* measurements of the CD storage box. The box requires a clearance to insert and position the CD jewel cases. Add a 2cm clearance to the overall width (1cm on each side) and 2cm to the height. The wall thickness is equal to 1cm.

Answer:

 \Box Clearance = 2cm

1 cm = 29 cm

- \Box Wall thickness = 1cm
- Wall thickness is applied to both sides of the width and height dimensions. Wall thickness is applied to one side of the depth dimension.
- CD storage box width = Overall width of 25 CD jewel cases + Clearance + Wall thickness + Wall thickness
 CD storage box width = 25cm + 2cm + 1cm +

- □ CD storage box height = CD case height + Clearance + Wall thickness + Wall thickness CD storage box height = 12.4cm + 2cm + 1cm + 1cm = 16.4cm
- □ CD storage box depth = CD case depth + Clearance + Wall thickness CD storage box depth = 14.2cm + 2cm + 1cm = 17.2cm
- Overall size CD storage box = Storage box width x Storage box height x Storage box depth

Overall size CD storage box = 29cm x 16.4cm x 17.2cm

Task 5— Creating the CD Jewel Case and Storage Box

Create two parts using SolidWorks.

□ Model a CD jewel case. You should use the dimensions you obtained in **Task 1**. Name the part CD case.

Note: A real CD jewel case is an assembly of several parts. For this exercise, you will make a simplified representation of a jewel case. It will be a single part that represents the overall outside dimensions of the jewel case.

- □ Design a storage box to hold 25 CD jewel cases.
- □ Save both parts. You will use them to make an assembly at the end of the next lesson.

More to Explore — Modeling More Parts

Description

Look at the following examples. There are at least three features in each example. Identify the 2D Sketch tools used to create the shapes. You should:

- □ Consider how the part should be broken down into individual features.
- Focus on creating sketches that represent the desired shape. You do not need to use dimensions. Concentrate on the shape.
- □ Also, experiment and create your own designs.

Note: Each new sketch should overlap an existing feature.

Task 1

Answer:

house.sldprt

- □ The features used to create the house are:
 - Base feature -Sketch a rectangle to create the 1st floor.
 - Extrude cut Sketch a rectangle to create the windows.
 - Extruded boss -Sketch a triangle to create the roof.

- Extruded boss Sketch a rectangle to create the chimney.
- Extruded boss Sketch a rectangle to create the front door.

Task 2

Answer:

- □ The features used to create the door are:
 - Base feature Sketch a rectangle to create the door.
 - Extruded cut Sketch a circle to create the door hole.
 - Extruded cut Sketch a rectangle to create the panel.
 - Chamfer Select the middle face. Click
 Chamfer on the Features

The Chamfer feature is a new feature. The chamfer feature removes material along an edge. It works very similarly to a fillet except the result is a beveled edge rather than a rounded edge.

Task 3

Answer:

□ The features used to create the truck are:

• Base feature - Sketch a rectangle to create the body.

toolbar. Enter a value for **Distance**. Click **OK**.

- Extruded boss Sketch two circles to create the wheel.
- Extruded boss Sketch the rectangle to create the cab.
- Extruded cut Sketch the rectangle to create the window.
- Shell Select the back top face to create the truck bed.
- Fillet Select the top face and the front face to round the cab roof and truck front.

truck.sldprt

REPRODUCIBLE

Lesson 3 Quiz

N	ame:	Class:	Date:	
Directions: Answer each question by writing the correct answer or answers in the space provided.				
1	How do you begin a new part document?			
2	How do you open a sketch?			
3	What is the Base feature?			
4	What color is the geometry of a fully defined sketch?			
5	How can you change a dimension value?			
6	What is the difference between an extruded boss feature and an extruded cut feature?			
7	What is a fillet feature?			
8	What is a shell feature?			
9	Name four types of geometric relations you can add to a sketch?			
10	What is a section view?			
11	How do you create multiple views of a p	oart?		

Lesson Summary

- □ Base Feature is the first feature that is created the foundation of the part.
- □ The Base Feature is the workpiece to which everything else is attached.
- □ You can create an Extruded Base Feature by selecting a sketch plane and extruding the sketch perpendicular to sketch plane.
- □ Shell Feature creates a hollow block from a solid block.
- The views most commonly used to describe a part are: Top View
 Front View
 Right View
 Isometric View

Thumbnail Images of PowerPoint[®] Slides

The following thumbnail images, arranged left to right, show the PowerPoint slides provided with this lesson.

Features and Commands

Base Feature

- The first feature that is created.
- The foundation of the part.
- The base feature geometry for the box is an extrusion.
- The extrusion is named Extrude1.

Tip: Keep the base feature simple.

Geometric Relations

- Geometric relations are the rules that control the behavior of sketch geometry.
- Geometric relations help capture design intent.
- Example: The sketched circle is concentric with the circular edge of the extruded boss feature.
- In a concentric relation, selected entities have the same center point.

às.

