Konstruktionstechnik und Technologie

F1 in Schools[™]-Konstruktionsprojekt mit SolidWorks[®] 2011 Software

FürR-Typ-Fahrzeuge

Dassault Systèmes SolidWorks Corp. 300 Baker Avenue Concord, MA 01742 USA Telefon: 1 800 693 9000 Außerhalb der USA: 1 978 371 5011 Fax: 1 978 371 7303 info@solidworks.com © 1995-2011, Dassault Systèmes SolidWorks Corporation, ein Unternehmen von Dassault Systèmes S.A., 300 Baker Avenue Concord, Massachusetts 01742 USA. Alle Rechte vorbehalten.

Die Informationen in diesem Dokument sowie die behandelte Software können ohne Ankündigung geändert werden und stellen keine Verpflichtungen seitens der Dassault Systèmes SolidWorks Corporation (DS SolidWorks) dar.

Es ist untersagt, Material ohne ausdrückliche schriftliche Genehmigung von DS SolidWorks in irgendeiner Form oder auf irgendeine Weise, elektronisch oder mechanisch, für welchen Zweck auch immer, zu vervielfältigen oder zu übertragen.

Die in diesem Dokument behandelte Software wird unter einer Lizenz ausgeliefert und darf nur in Übereinstimmung mit den Lizenzbedingungen verwendet und kopiert werden. Alle Gewährleistungen, die von DS SolidWorks in Bezug auf die Software und Dokumentation übernommen werden, sind im SolidWorks Corporation Lizenz- und Subskriptionsdienst-Vertrag festgelegt, und nichts, was in diesem Dokument aufgeführt oder durch dieses Dokument impliziert ist, darf als Modifizierung oder Änderung dieser Gewährleistungen betrachtet werden.

Hinweise zu Patenten der SolidWorks Standard, Premium und Professional Produkte.

US-amerikanische Patente 5,815,154; 6,219,049; 6,219,055; 6,603,486; 6,611,725; und 6,844,8777 sowie bestimmte Patente anderer Länder, einschließlich EP 1,116,190 und JP 3,517,643. Weitere US-amerikanische Patente und Patente anderer Länder angemeldet, z. B. EP 1,116,190 and JP 3,517,643. Weitere US-amerikanische Patente und Patente anderer Länder angemeldet.

Hinweise zu Marken und sonstige Hinweise für alle SolidWorks Produkte.

SolidWorks, 3D PartStream.NET, 3D ContentCentral,

PDMWorks, eDrawings und das eDrawings-Logo sind eingetragene Marken und FeatureManager ist eine eingetragene Gemeinschaftsmarke von DS SolidWorks. SolidWorks Enterprise PDM SolidWorks Simulation, SolidWorks Flow Simulation und SolidWorks 2011 sind Produktnamen von DS SolidWorks.

CircuitWorks, Feature Palette, FloXpress, PhotoWorks, TolAnalyst und XchangeWorks sind Marken von DS SolidWorks.

FeatureWorks ist eine eingetragene Marke von Geometric Ltd. Andere Marken oder Produktbezeichnungen sind Marken der jeweiligen Inhaber.

KOMMERZIELLE COMPUTER-SOFTWARE – EIGENTUMSRECHTE.

Eingeschränkte Rechte der US-Regierung. Die Verwendung, Duplizierung oder Veröffentlichung durch die US-Regierung unterliegt den Beschränkungen gemäß der Definition in FAR 52.227-19 (Commercial Computer Software - Restricted Rights), DFARS 227.7202 (Commercial Computer Software and Commercial Computer Software Documentation) und im Lizenzabkommen, wie zutreffend.

Lieferant/Hersteller:

Dassault Systèmes SolidWorks Corp, 300 Baker Avenue, Concord, Massachusetts 01742, USA

Copyright-Hinweise für SolidWorks Standard, Premium und Professional Produkte.

Teile dieser Software sind urheberrechtlich geschützt von Siemens Product Lifecycle Management Software III (GB) Ltd., © 1990-2011.

Teile dieser Software sind urheberrechtlich geschützt von Geometric Ltd., O 1998-2011

Teile dieser Software sind urheberrechtlich geschützt von mental images GmbH & Co. KG, @ 1986-2011.

Teile dieser Software sind urheberrechtlich geschützt von der Microsoft Corporation, @ 1996-2011. Alle Rechte vorbehalten.

Teile dieser Software sind urheberrechtlich geschützt von Tech Soft 3D, © 2000-2011.

Teile dieser Software sind urheberrechtlich geschützt von 3Dconnexion, © 1998-2008.

Die Software basiert zum Teil auf der Arbeit der Independent JPEG Group. Alle Rechte vorbehalten. Teile dieser Software beinhalten PhyXTM und sind urheberrechtlich geschützt von NVIDIA, © 2006-2009.

Teile dieser Software sind Eigentum der UGS Corp. und urheberrechtlich geschützt, Copyright @ 2011.

Teile dieser Software sind urheberrechtlich geschützt von Luxology, Inc., © 2001 - 2011. Alle Rechte vorbehalten, Patente angemeldet.

Teile dieser Software sind urheberrechtlich geschützt von DriveWorks Ltd., © 2007 - 2011.

Copyright 1984 - 2009 Adobe Systems, Inc. und Lizenzgeber. Alle Rechte vorbehalten. Geschützt durch die US-amerikanischen Patente 5,929,866; 5,943,063; 6,289,364; 6,639,593; 6,743,382; Patente angemeldet.

Adobe, das Adobe Logo, Acrobat, das Adobe PDF Logo, Distiller und Reader sind eingetragene Marken oder Marken von Adobe Systems Inc. in den USA und anderen Ländern.

Weitere Copyright-Informationen finden Sie in SolidWorks unter Hilfe, SolidWorks Info.

Andere Teile von SolidWorks 2011 sind von DS SolidWorks Lizenzgebern lizenziert.

Copyright-Hinweise für SolidWorks Simulation.

Teile dieser Software sind urheberrechtlich geschützt durch die Solversoft Corporation, @ 2008.

PCGLSS © 1992 - 2007 Computational Applications and System Integration, Inc. Alle Rechte vorbehalten.

Teile dieses Produkts werden unter der Lizenz von DC Micro Development vertrieben, Copyright © 1994 - 2005 DC Micro Development, Inc. Alle Rechte vorbehalten.

Inhaltsverzeichnis

Einleitung	1
Verwendung dieses Buchs	2
Was ist die SolidWorks-Software?	
Voraussetzungen	
Im Handbuch verwendete Konventionen	
Bevor Sie anfangen	
Hinzufügen des Ordners zum Pfad der Konstruktionsbibliothek	
Konstruieren des Rennwagens	11
Wichtige Aspekte für die Konstruktion	
Informationen zu Balsaholz	
Starten von SolidWorks und Öffnen eines vorhandenen Teils	
Feature "Linear ausgetragener Schnitt"	
Erstellen des Frontflügels	
Erstellen des Heckflügels	
Einfügen von Verrundungen	
Erstellung einer Baugruppe	
Einfügen von Verknüpfungen	
Berechnen des Gewichts des Rennwagens	
Berechnen der Gesamtlänge des Rennwagens	49
Erstellen einer Explosionsansicht	
Bemaßungsanforderungen für den Rennwagen	61
Erstellen einer Baugruppenzeichnung	65
Erstellen einer Baugruppenzeichnung	66
Öffnen eines Teils der Baugruppe	
Erstellen einer Explosionsansicht der Baugruppe	

PhotoView 360™	81
Aktivieren von PhotoView 360	
Erstellen einer Konfiguration für das Rendering	
Erscheinungsbild	
Rendern	
Modifizieren des Erscheinungsbilds	
Bühnen	
Abziehbilder	
Bearbeiten eines Abziehbildes	
Ausgabeoptionen	

Analyse	111
Ändern des Heckflügels	
Berechnen der neuen Masse	
Anwenden des Werkzeugs "Messen"	
Spannungsanalyse der Achse	
Konstruktionsanalyse	
Spannungsanalyse	
Benutzeroberfläche	
Analyse des Teils "Axle-A" (Achse-A)	
SolidWorks SimulationXpress	
Anwenden einer Last	
Zuweisen von Material	
Ausführen der Analyse	
Betrachten der Ergebnisse	
Ausführen eines Berichts	
Optimierung des Modells	
SolidWorks Flow Simulation	
Anzeigen der Ergebnisse	
Ändern der Konstruktion	
Prüfen der Ergebnisse	
Experimentieren Sie weiter!	

Lektion 1 Einleitung

Nach Abschluss dieser Lektion können Sie:

- Dieses Buch für das Konstruktionsprojekt *F1 in Schools*TM für R-Typ-Fahrzeuge verwenden.
- Eine SolidWorks 2011-Sitzung starten.
- Die f
 ür dieses Projekt erforderlichen Dateien, Ordner und Modelle herunterladen.
- Den Ordner Race Car Design Project der SolidWorks-Konstruktionsbibliothek im Task-Fensterbereich hinzufügen.

Verwendung dieses Buchs

Im Rahmen des Konstruktionsprojekts *F1 in Schools*[™] lernen Sie, die SolidWorks-Prinzipien und -Methoden der 2D- und 3D-Modellierung bei der Erstellung einer Baugruppe und einer Zeichnung für einen Rennwagen (Race Car) sowie die Analysewerkzeuge *SolidWorks SimulationXpress* und *SolidWorks Flow Simulation* anzuwenden.

Beim Durcharbeiten der Lektionen in diesem Buch werden folgende Lerninhalte durch praktische Anwendung vermittelt:

- Aufbau einer SolidWorks-Sitzung
- Überblick über die Benutzeroberfläche und Symbolleisten von SolidWorks
- Öffnen von Teilen und Erstellen der Rennwagen-Baugruppe Race Car in 3D
- Erstellen einer detaillierten, aus mehreren Zeichenblättern und mehreren Ansichten bestehenden Zeichnung der Rennwagen-Baugruppe Race Car
- Anwenden der Werkzeuge Messen und Masse
- Anwenden von PhotoWorks
- Anwenden der Analysewerkzeuge SolidWorks SimulationXpress und SolidWorks Flow Simulation

Was ist die SolidWorks-Software?

SolidWorks ist eine CAD-Automationssoftware. In SolidWorks setzen Sie Ihre Ideen in Skizzen um und experimentieren mit unterschiedlichen Konstruktionen, für die Sie über die leicht erlernbare grafische Benutzeroberfläche von Windows[®] 2D- und 3D-Skizzen, 3D-Modelle, 3D-Baugruppen und 2D-Zeichnungen erstellen.

SolidWorks wird weltweit von Studenten, Konstrukteuren, Ingenieuren und anderen Fachleuten zur Erstellung von einfachen und komplexen Teilen, Baugruppen und Zeichnungen eingesetzt.

Voraussetzungen

Bevor Sie mit dem Konstruktionsprojekt F1 in SchoolsTM beginnen, sollten Sie die nachfolgenden SolidWorks Lehrbücher im Ordner "Getting Starting" durcharbeiten, die zum Lieferumfang der SolidWorks-Software gehören:

Maschinenbaukonstruktion und Technologie

- Lektion 1 Teile
- Lektion 2 Baugruppen
- Lektion 3 Zeichnungen

Klicken Sie auf Hilfe, Student Curriculum, um auf den Ordner Race Car Design Project zuzugreifen.

Anmerkung: Referenten - Klicken Sie auf Hilfe, Studienplan für Referenten, um auf die Ressourcen für Lehrzwecke zuzugreifen.

> Alternativ können Sie auch folgende Lektionen in *An Introduction to Engineering Design With SolidWorks* (Einführung in die Konstruktion mit SolidWorks) durcharbeiten:

- Lektion 1: Using the Interface (Verwenden der Benutzeroberfläche)
- Lektion 2: Basic Functionality (Grundlegende Funktionen)
- Lektion 3: The 40-Minute Running Start (40-Minuten-Schnellstart)
- Lektion 4: Assembly Basics (Grundlagen von Baugruppen)
- Lektion 5: Drawing Basics (Grundlagen des Zeichnens)

💕 SolidWorks Lehr	bücher		
Einblenden Zurück	⊏ > Vorwärts	a Drucken	
SolidWorks	s Lehrb	ücher	^
Diese Lehrbücher in einem auf Beis; Lesen Sie die Info Wenn Sie die Solii kennen, beginnen	zeigen Solic oielen basier rmationen zu dWorks Soffw Sie mit den	Works Funktio rendem Lernfo u den <u>Konventi</u> vare noch nich Lehrbüchern	onen Irmat. <u>onen</u> . It
Erste Schritte. Alle anderen Lehrbücher können in beliebiger Reihenfolge ausgeführt werden.			
Lehr	bücher (ategor	nach ie	
Erste Schritte	Spezielle M	odelitypen	
Moaelle erstellen	Produktivitä	itssteigerung	en
Arbeiten mit Modellen	Konstruktio	nsanalyse	
Alle SolidW	/orks Lehrbi	icher (Satz 1)	
Alle SolidWorks Lehrbücher (Satz 2)			
Lehrbüche	r zu den neu	e Funktionen	

Im Handbuch verwendete Konventionen

In diesem Handbuch werden die folgenden typografischen Konventionen verwendet:

Konvention	Bedeutung
Fett Sans Serif	Auswählbare SolidWorks-Befehle und -Optionen werden in dieser Schrift dargestellt. Beispiel 1: Linear ausgetragener Aufsatz bedeutet: Klicken Sie auf der Features-Symbolleiste auf das Symbol Linear ausgetragener Aufsatz. Beispiel 2: Ansicht, Ursprünge bedeutet: Klicken Sie im Menüleisten-Menü auf Ansicht, Ursprünge.
Maschinensc hrift	Datei- und Ordnernamen werden in dieser Schrift dargestellt. Beispiel 1: Race Car Design Project. Beispiel 2: Skizze1.
17 Schritt	Die Schritte in den Lektionen sind in Fett Sans Serif nummeriert.

Bevor Sie anfangen

Kopieren und entpacken Sie den Ordner Race Car Design Project von der SolidWorks-Website auf Ihren Computer, bevor Sie dieses Projekt beginnen.

1 Eine SolidWorks-Sitzung starten.

Klicken Sie im Windows Startmenü auf **Alle Programme**, **SolidWorks**, **SolidWorks**. Die SolidWorks-Anwendung wird geöffnet.

Anmerkung: Wenn Sie ein SolidWorks-Symbol auf dem Desktop erstellt haben, klicken Sie auf das Symbol, um die SolidWorks-Sitzung zu starten.

2 Den Ordner "Race Car Design Project" kopieren.

Klicken Sie im Task-Fensterbereich auf die Registerkarte **SolidWorks-Ressourcen**

Klicken Sie auf den Ordner Studienplan für Studierende (Student Curriculum) (siehe Abbildung).

Lektion 1: Einleitung

SolidWorks Maschinenbaukonstruktion und Technologie

Klappen Sie den Ordner SolidWorks Educator Curriculum auf.

Doppelklicken Sie auf den benötigten Ordner Curriculum. Zeigen Sie die verfügbaren Ordner an.

Anmerkung: Zum Zeitpunkt des Verfassens dieses Dokuments stand der Ordner Curriculum 2011 nicht zur Verfügung.

> Doppelklicken Sie auf den Ordner F1-in Schools Race Car Design Project.

> Klicken Sie bei gedrückter Strg-Taste auf den Ordner F1-inSchools Race Car Design Project, wie in der Abbildung gezeigt, um den Text und die SolidWorks Modelldateien (anfängliche und endgültige) herunterzuladen.

SolidWorks Maschinenbaukonstruktion und Technologie

- Tipp: Fragen Sie Ihren Lehrer/ Kursleiter, wo die Zip-Datei gespeichert werden soll. Merken Sie sich, wo Sie die herunter geladene Zip-Datei gespeichert haben.
 - 3 Zip-Ordner suchen. Wählen Sie einen Ordner als Speicherort auf Ihrem Computer.

Klicken Sie im Dialogfeld Ordner suchen auf **OK**.

4 Ordner entpacken.

Navigieren Sie mit **Durchsuchen** zu dem Ordner, in dem Sie den heruntergeladenen Zip-Ordner gespeichert haben.

Entpacken Sie den Ordner. Dies kann einige Minuten dauern.

Extrahieren Sie alle

Dateien und Ordner.

Wählen Sie den Ordner.

Klicken Sie auf **Extract**.

Anmerkung: Die einzelnen Schritte hängen von Ihrem Betriebssystem ab.

	E 🗎) 2009Cetif	icationbook	<		^
	🕀 🚞	2010 SW	AssemblyM	odeling-CD-N	Nodels	
	🕀 🚞	2010 SW	Drawing&D	etailing		
	± 🚞	2010 SW	Engineering	gdesign		
	H C	2010-Inst	rutorText-l	Models-CD		
	· E	Bobclass				
	± 🚞	CD-20109	WENGINE	RINGDESIG	V	
	H 🔁	CD-20105	WTUTORI	AL-REVISED		
	2	F1 in Scho	ol Race Ca	r		
	6		T-MPLANC	3-5WK)		
	• C	JapanCer	tifcation20	09 ⁽		
	P	My Files(N	IKT-MPLAN	C3-SWK)		~
1					>	

ennied	A PETRIA	
Ziel:	E:\F1 in School Race Car\2010_F1inSchoolsDesignProject.zip	
Verlauf;	5% heruntergeladen 14360K von 283804 K	
	Abbrechen	

Name 🔺	6	iröße	Тур	Geändert am
2010_F1inSchol	Öffnen Suchen Explorer Alle extrahieren		ZIP-komprimierter Ordner	02.03.2011 11:34

	x
🕞 🔒 ZIP-komprimierte Ordner extrahieren	
Wählen Sie ein Ziel aus und klicken Sie auf "Extrahieren". Dateien werden in diesen Ordner extrahiert:	
wsersylancharavUestopit2 in SchoonAcct Lav2uU_2 in SchoonAccignizioged	
Extrahieren Abbreche	n

Doppelklicken Sie auf den Ordner Fl in Schools Design Project. Zeigen Sie die beiden Ordner an.

Anmerkung: Zum Zeitpunkt des Verfassens dieses Dokuments stand der Ordner Curriculum 2011 nicht zur Verfügung.

Doppelklicken Sie auf den Ordner Project Workbook zum Auswählen Ihrer Sprache.

Doppelklicken Sie auf den Zip-Ordner SW_File_F1_2011, um die Modelldateien für das Buch zu erhalten.

Name 🔺	Größe	Тур	Geändert am
Droject Workbook	[Dateiordner	04.03.2011 00:34
SW_Files_F1_2010.zip	199,475 KB 2	ZIP-komprimierter Ordner	02.03.2011 11:34
A			

Name 🔺	Тур
Race Car Design Project SolidWorks 2010-Models-Final	Dateiordner
Race Or Design Project SolidWorks 2010-Models-Initial	Dateiordner

SolidWorks Maschinenbaukonstruktion und Technologie

Hinzufügen des Ordners zum Pfad der Konstruktionsbibliothek

Über die SolidWorks-Konstruktionsbibliothek können Sie ganz einfach auf die in den Übungen verwendeten Teile zugreifen. Dies ist effizienter als das Suchen nach einer Datei über die Menüleistenoptionen Datei, Öffnen. Fügen Sie den Ordner Race Car Design Project (anfänglicher) dem Suchpfad der Konstruktionsbibliothek hinzu.

- Task-Fensterbereich öffnen. Klicken Sie auf die Registerkarte Konstruktionsbibliothek .
- 2 Ordner "Konstruktionsbibliothek" hinzufügen. Klicken Sie in der Konstruktionsbibliothek auf die Registerkarte Dateiposition hinzufügen 3.

Navigieren Sie mit **Durchsuchen** zu dem Ordner, in dem Sie den anfänglichen Modellordner entpackt haben.

Doppelklicken Sie auf den Ordner Race Car Design Project SolidWorks 2011-Models-Initial.

57 KB

71 KB

563 KB

SolidWorks

Maschinenbaukonstruktion und Technologie

Klicken Sie auf	Name 📥		Тур
den Ordner	Car Design Proje	ect SolidWorks 2010-Models-Final	Dateiordner
Race Car	Race Car Design Proje	ect SolidWorks 2010-Models-Initial	Dateiordner
Design			
Project	🔼 Zurück 🔹 🕥 - 🏠 🔎 Suchen	Crdner 📰 -	
SolidWorks			
2011-	Adresse U U: \MI in School Race Car (2010)	_FlinSchoolsDesignfroject Name 🔺	Τνρ
Models-	Datei- und Ordneraufgaben 🏾 🄇	analysis 💼	Dateiordner
Initial.		Flow Simulation	Dateiordner Dateiordner
Klicken Sie auf	Ordner kopieren	Axle.SLDPRT Acce Car Block.SLDPRT Wheel.SLDPRT	SolidWorks Teildokument SolidWorks Teildokument SolidWorks Teildokument
UR.		1.526	5 H 5 "0
		Typ Dateiordner	Gepackte Große
	Elow Simulation	Dateiordner	

Flow Simulation

Race Car Block

Axle

Wheel

3 Ergebnisse.

Der Inhalt des Ordners Race Car Design Project SolidWorks ist nun über die SolidWorks-Konstruktionsbibliothek verfügbar.

Anmerkung: Aktuelle

Konstruktionsanforderungen und Spezifikationen sowie kostenlose SolidWorks-Software finden Sie unter www.flinschools.co.uk.

Dateiordner

SolidWorks Teildokument

SolidWorks Teildokument

SolidWorks Teildokument

Lektion 2 Konstruieren des Rennwagens

Nach Abschluss dieser Lektion können Sie:

- Wichtige Leistungsfaktoren f
 ür einen Rennwagen mit CO₂-Antrieb beschreiben.
- Die Rennwagen-Baugruppe mithilfe der folgenden Feature- und Skizzenwerkzeuge aus einem vorhandenen Modell erstellen: Linear ausgetragener Aufsatz, Linear ausgetragener Schnitt, Linie, Skizzenverrundung, Verrundung, Intelligente Bemaßung, Verknüpfen, Auflösen und Komponente drehen.
- Komponenten in eine neue Baugruppe einfügen.
- Standardverknüpfungen zwischen Komponenten der Rennwagen-Baugruppe anwenden.
- Eine Explosionskonfiguration der Rennwagen-Baugruppe erstellen.
- Das Werkzeug Masseneigenschaften anwenden.
- Das Werkzeug Messen anwenden.
- Teile aus der Rennwagen-Baugruppe öffnen.
- Die Übereinstimmung der Bemaßungen des Rennwagens (R-Typ) mit den Regeln und Vorschriften des Konstruktionswettbewerbs *F1 in Schools*TM sicherstellen.

Wichtige Aspekte für die Konstruktion

Im Hinblick auf das Regelwerk des Konstruktionsprojekts *F1 in Schools*™ sind einige Faktoren zu berücksichtigen, wenn Sie ein Siegerauto konstruieren möchten. Diese sind:

Reibung

Energie, die aufgewendet wird, um

Reibung zu überwinden, kann nicht mehr zur Beschleunigung Ihres Rennwagens eingesetzt werden. Zu den Reibungsquellen gehören:

- Räder und Achsen. Wenn die Räder nicht frei drehbar sind, wird der Rennwagen langsam.
- Falsch ausgerichtete Achsen. Wenn die Achsbohrungen nicht senkrecht zur Mittellinie des Wagens gesetzt werden, zieht der Wagen nach links oder rechts. Das führt zu Geschwindigkeitseinbußen und kann den Sieg kosten!
- Falsch ausgerichtete Führungsösen. Wenn die Führungsösen nicht ordnungsgemäß positioniert und ausgerichtet werden, kann die Führungsschnur eine Zugkraft auf die Ösen, die Karosserie oder die Räder ausüben. Dadurch wird der Wagen unter Umständen stark abgebremst.
- Erhebungen oder fehlerhafte Stellen in der Lauffläche der Räder. Je glatter die Räder und je perfekter ihre Rundung, desto besser rollen sie.
- Masse

Eine CO_2 -Patrone kann nur einen begrenzten Schub liefern. Es ist logisch, dass ein Wagen mit weniger Masse schneller beschleunigt und sich auf der Rennstrecke schneller bewegt. Die Reduktion der Masse Ihres Wagens stellt also eine Möglichkeit dar, ein schnelleres Auto zu bauen. Denken Sie jedoch daran, dass im Regelwerk eine Mindestmasse von 55 Gramm pro Fahrzeug festgelegt ist.

Aerodynamik

Die Luft übt einen Widerstand bzw. eine Zugkraft aus, wenn das Auto sich hindurch bewegt. Um diese Zugkraft möglichst gering zu halten, sollte das Fahrzeug eine glatte, stromlinienförmige Form aufweisen.

Anmerkung: Am Ende dieser Lektion finden Sie eine Zusammenfassung der Konstruktionsanforderungen für Ihre Rennwagen-Baugruppe. Aktuelle Anforderungen und Spezifikationen finden Sie unter www.flinschools.co.uk.

SolidWorks

Maschinenbaukonstruktion und Technologie

Informationen zu Balsaholz

Balsabäume wachsen in den feuchten Regenwäldern Mittel- und Südamerikas. Das natürliche Verbreitungsgebiet reicht von Guatemala über Mittelamerika bis zur Nord- und Westküste Südamerikas und dort bis hinab nach Bolivien. Das kleine Land Ecuador an der Westküste Südamerikas ist jedoch weltweit der Hauptlieferant von Balsaholz für den Modellbau.

Balsabäume benötigen ein warmes, regenreiches Klima mit gutem Wasserablauf. Daher wachsen hochwertige Balsabäume hauptsächlich in den leicht erhöht gelegenen Gebieten zwischen tropischen Flüssen. Ecuador verfügt über ideale klimatische und geografische Bedingungen für den Anbau von Balsabäumen.

Nach Europa importiertes Balsaholz

stammt aus Plantagenanbau. Die Verwendung von Balsa bringt keine Zerstörung von Regenwäldern mit sich – die Bäume wachsen extrem schnell. Bereits nach 6 bis 10 Jahren erreicht der Baum seine optimale Schlagreife. Er ist dann 18 bis 28 Meter hoch und weist einen Durchmesser von etwa 115 Zentimetern auf. Wenn man ihn weiter wachsen lässt, werden die äußeren, jungen Holzschichten sehr hart und der Baum beginnt von innen zu verrotten. Balsabäume können einen Durchmesser von 180 Zentimetern oder mehr erreichen, ein Baum dieser Größe liefert allerdings nur noch sehr wenig verwertbares Holz.

Balsaholz können Sie guten Gewissens verwenden. Für seine Gewinnung werden keine Regenwälder abgeholzt.

Starten von SolidWorks und Öffnen eines vorhandenen Teils

1 SolidWorks starten.

Klicken Sie im Startmenü auf **Alle Programme**, **SolidWorks**, **SolidWorks**. Der Grafikbereich von SolidWorks wird eingeblendet.

2 Konstruktionsbibliothek öffnen. Klicken Sie im Task-Fensterbereich auf die Registerkarte Konstruktionsbibliothek an.

3 Rennwagenblock öffnen.

Klicken Sie in der Konstruktionsbibliothek auf den Ordner **Race Car Design Project SolidWorks**.

Der Inhalt des Ordners wird im unteren Fensterbereich der Konstruktionsbibliothek angezeigt.

Ziehen Sie das Teil namens **Race Car Block** (Rennwagenblock) in den Grafikbereich von SolidWorks. Zeigen Sie das Modell und den FeatureManager an.

Anmerkung: Dies kann 1 bis 5 Sekunden in Anspruch nehmen.

Der FeatureManager auf der linken Seite des SolidWorks-Fensters gibt Ihnen einen Überblick über das aktive Modell. So können Sie sich schnell einen Überblick darüber verschaffen, wie das Modell konstruiert wurde.

Der FeatureManager und der Grafikbereich sind dynamisch miteinander verknüpft. In beiden Bereichen können Sie Features, Skizzen, Zeichenansichten und Konstruktionsgeometrie auswählen.

Lektion 2: Konstruieren des Rennwagens

SolidWorks

Maschinenbaukonstruktion und Technologie

4 Erstellte Features und Skizzen im Modell überprüfen.

Ziehen Sie die **Einfügeleiste** nach oben vor das Feature Balsa Block (Balsablock).

Das Feature Balsa Block wird angezeigt.

Doppelklicken Sie im FeatureManager auf das Feature Balsa Block. Das Feature wird in Blau im Grafikbereich eingeblendet, und Sketch1 (Skizze1) wird angezeigt. Zeigen Sie die Bemaßungen an. Drücken Sie bei Bedarf die Taste Z, um das Modell an die Größe des Grafikbereichs anzupassen.

Anmerkung: Der Balsablock hat eine Größe von 223 x 50 x 65 mm. Wenn Sie für die maschinelle Bearbeitung des Fahrzeugs eine Haltevorrichtung verwenden möchten, müssen Sie darauf achten, dass die Konstruktion nicht länger als 210 mm ist. Die meisten Haltevorrichtungen verfügen über eine Nasenplatte, die die Vorderseite des Balsablocks hält. Wenn Ihre Konstruktion zu lang ist, kann der Schaftfräser oder die Haltevorrichtung beschädigt werden.

Ziehen Sie die **Einfügeleiste** nach unten vor das Feature Screw Eye Slot (Schlitz für Führungsösen).

Zeigen Sie die Features im Grafikbereich an.

Doppelklicken Sie im FeatureManager auf das Feature Screw Eye Slot. Das Feature wird in Blau eingeblendet, und Sketch2 (Skizze2) wird angezeigt.

Ziehen Sie die **Einfügeleiste** nach unten vor das Feature CO2 Cartridge Hole (Bohrung für CO2-Patrone). Zeigen Sie die Features im Grafikbereich an.

Doppelklicken Sie im Feature Manager auf das Feature CO2 Cartridge Hole. Das Feature wird in Blau eingeblendet, und Sketch3 (Skizze3) wird angezeigt. Ziehen Sie die **Einfügeleiste** nach unten vor das Feature Axle Hole Cut Out (Achsbohrungsausschnitt). Zeigen Sie die Features im Grafikbereich an.

Doppelklicken Sie im FeatureManager auf das Feature Axle Hole Cut Out. Das Feature wird in Blau eingeblendet, und Sketch4 (Skizze4) wird angezeigt.

Ziehen Sie die **Einfügeleiste** nach unten vor (-) Sketch5 [(-) Skizze5].

Klicken Sie im FeatureManager auf (-) Sketch5. Zeigen Sie (-) Sketch5 im Grafikbereich an.

(-) Sketch5 ist die Skizze eines Splines. Splines werden zum Skizzieren von Kurven verwendet, die eine sich ständig ändernde Form aufweisen. Sie werden über eine Reihe von Punkten definiert, zwischen denen die SolidWorks-Software anhand von Gleichungen die Kurvengeometrie interpoliert.

Splines sind für die Modellierung von glatten und stromlinienförmigen Freiformen besonders hilfreich (Karosserie des Rennwagens).

Anmerkung: (-) Sketch5 ist nicht voll definiert, da es sich bei einem Spline um eine Freiform handelt, die je nach Konstrukteur unterschiedlich ausfällt.

Starten von SolidWorks und Öffnen eines vorhandenen Teils

Ziehen Sie die Einfügeleiste unter Sketch8 (Skizze8).

Klicken Sie im FeatureManager auf Sketch8.

Zeigen Sie Sketch8 im Grafikbereich an.

Klicken Sie auf eine Stelle im Grafikbereich.

Feature "Linear ausgetragener Schnitt"

Ein linear ausgetragener Schnitt ist ein Feature, das Material aus einem Teil oder einer Baugruppe entfernt. Entfernen Sie Material zur Erstellung der Karosserie des Rennwagens.

1 Erstes linear ausgetragenes Schnitt-Feature erstellen. Klicken Sie im FeatureManager mit der rechten Maustaste auf

(-) Sketch5.

Klicken Sie auf der Kontext-Symbolleiste auf Skizze bearbeiten

Die Skizzieren-Symbolleiste wird im BefehlsManager angezeigt.

Klicken Sie im BefehlsManager auf die Registerkarte Features. Die Features-Symbolleiste wird eingeblendet.

Klicken Sie auf der Features-Symbolleiste auf Linear

ausgetragener Schnitt

PropertyManager Schnitt-Linear austragen wird eingeblendet.

Wählen Sie unter **Richtung 1** die Endbedingung Durch alles aus.

Linear

Klicken Sie auf die zwei Oberflächen, wie im Grafikbereich dargestellt. Skizze5-Bereich<1> und Skizze5-Bereich<2> werden im Dialogfeld Ausgewählte Konturen angezeigt.

Klicken Sie im PropertyManager Schnitt-Linear austragen auf OK

Cut-Extrude1 (Schnitt-Linear austragen1) wird im FeatureManager eingeblendet.

Klicken Sie auf eine Stelle im Grafikbereich. Zeigen Sie die Ergebnisse an.

Anmerkung: Sie

die

sollten Datel Bearbeiten Ansicht Einfügen Extras Simulation Fenster Hilfe. 9 1 - 0 -1.0 Menül

eisten-Symbolleiste und das Menüleistenmenü anheften 📟, um bei der Arbeit mit diesem Buch auf beide Menüs zugreifen zu können.

Maschinenbaukonstruktion und Technologie

2 Modell speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf Speichern 📠

3 Zweites linear ausgetragenes Schnitt-Feature erstellen.

Klicken Sie im FeatureManager mit der rechten Maustaste auf (-)Sketch6 [(-)Skizze6].

Klicken Sie auf der Kontext-Symbolleiste auf **Skizze**

bearbeiten 🙋. Die

Skizzieren-Symbolleiste wird im BefehlsManager angezeigt.

Klicken Sie auf der Voransichts-Symbolleiste auf die Ansicht

Rechts Ø. Die Ansicht Rechts wird eingeblendet.

SolidWorks Maschinenbaukonstruktion und Technologie

Drücken Sie zum Verkleinern die Taste z. Drücken Sie zum Vergrößern die Taste Z. Drücken Sie die Taste f. um das Modell an die Größe des Grafikbereichs anzupassen.

Klicken Sie im BefehlsManager auf die Registerkarte Features. Die Features-Symbolleiste wird eingeblendet.

Klicken Sie auf das Werkzeug Linear ausgetragener Schnitt Der PropertyManager Schnitt-

Linear austragen wird eingeblendet.

Anmerkung: Als Endbedingung für Richtung 1 und Richtung 2 wird Durch alles ausgewählt.

> Aktivieren Sie das Kontrollkästchen Umkehrung der Schnittseite. Betrachten Sie die Richtung der linearen Austragung.

Klicken Sie im PropertyManager Schnitt-Linear austragen auf OK Cut-Extrude2 (Schnitt-Linear austragen2) wird eingeblendet.

Klicken Sie auf der Menüleisten-Symbolleiste auf **Speichern**

Linear

ausgetragener

Aufsatz

Features

SolidWorks

Maschinenbaukonstruktion und Technologie

4 Drittes linear ausgetragenes Schnitt-Feature erstellen.

Erstellen Sie die Bohrung für die CO₂-Patrone. Klicken Sie im FeatureManager mit der rechten Maustaste auf Sketch7 (Skizze7).

Klicken Sie auf der Kontext-Symbolleiste auf **Skizze bearbeiten** Die Skizzieren-Symbolleiste wird im BefehlsManager angezeigt.

Klicken Sie auf der Voransichts-Symbolleiste auf die **Rückansicht**

Klicken Sie auf der Voransichts-Symbolleiste auf **Verdeckte Kanten**

sichtbar 🗇

Zeigen Sie die Bemaßungen der Skizze an.

Anmerkung: Sketch7 ist die

Skizze der Bohrung für die CO₂-Patrone.

SolidWorks Maschinenbaukonstruktion und Technologie

Klicken Sie im BefehlsManager auf die Registerkarte Features. Die Features-Symbolleiste wird eingeblendet.

Klicken Sie auf das Werkzeug Linear ausgetragener Schnitt

R

Linear

Features

Der PropertyManager Schnitt-Linear austragen wird eingeblendet.

Wählen Sie **Durch alles** als Endbedingung für Richtung 1 und Richtung 2 aus.

Aktivieren Sie das Kontrollkästchen Umkehrung der Schnittseite.

Anmerkung: Sehen Sie sich die Richtung der Pfeile des Linear-Austragen-Features an.

SolidWorks Maschinenbaukonstruktion und Technologie

Klicken Sie auf der Voransichts-Symbolleiste auf **Isometrisch** . Klicken Sie im

PropertyManager Schnitt-Linear austragen auf OK S. Zeigen Sie das linear ausgetragene Schnitt-Feature an. Cut-Extrude3 (Schnitt-Linear austragen3) wird eingeblendet.

Klicken Sie auf eine Stelle **im** Grafikbereich.

Klicken Sie auf der Voransichts-Symbolleiste auf Schattiert mit Kanten 🧾

5 Modell speichern.

Klicken Sie auf **Speichern**

Erstellen des Frontflügels

1 Mittigen linear ausgetragenen Aufsatz erstellen. Klicken Sie im FeatureManager mit der rechten Maustaste auf Sketch8. Sketch8 ist die Skizze für den Frontflügel des Fahrzeugs.

Klicken Sie auf der Kontext-Symbolleiste auf Skizze

bearbeiten Die Skizzieren-Symbolleiste wird im BefehlsManager angezeigt.

Klicken Sie auf der Voransichts-Symbolleiste

auf die Ansicht Rechts

Drücken Sie die Taste **z**, um das Modell an die Größe des Grafikbereichs anzupassen.

Zeigen Sie die Bemaßungen der Skizze an.

2 Linear ausgetragenen Aufsatz erstellen. Mit dem Feature Linear ausgetragener Aufsatz wird dem Modell Material hinzugefügt.

Klicken Sie im BefehlsManager auf die Registerkarte **Features**. Die Features-Symbolleiste wird eingeblendet.

Klicken Sie auf der Features-Symbolleiste

auf Linear ausgetragener Aufsatz . Der PropertyManager Aufsatz-Linear austragen wird eingeblendet.

Wählen Sie Mittig als Endbedingung in Richtung 1 aus.

Geben Sie **50.00** mm für die **Tiefe** ein.

10

SolidWorks Maschinenbaukonstruktion und Technologie

Klicken Sie auf der Voransichts-Symbolleiste

auf **Isometrisch** . Zeigen Sie den linear ausgetragenen Aufsatz an.

Klicken Sie im PropertyManager Aufsatz-Linear austragen auf **OK** Boss-Extrude1 (Aufsatz-Linear austragen1) wird eingeblendet.

Klicken Sie auf eine Stelle **im** Grafikbereich.

Anmerkung: Drehen Sie das Modell mit der mittleren Maustaste im Grafikbereich. Sehen Sie sich die erstellten Features an.

3 Modell speichern.

Klicken Sie auf der Menüleisten-

Symbolleiste auf **Speichern** .

Erstellen des Heckflügels

1 Skizze erstellen.

Klicken Sie auf der Voransichts-Symbolleiste

auf Verdeckte Kanten ausgeblendet 🗐.

Klicken Sie im FeatureManager mit der rechten Maustaste auf **Right Plane** (Ebene rechts).

Klicken Sie auf der Kontext-Symbolleiste auf

Skizze . Die Skizzieren-Symbolleiste wird eingeblendet. Die Ebene rechts ist Ihre Skizzenebene.

Klicken Sie auf der Voransichts-Symbolleiste

auf die Ansicht Rechts

Drücken Sie die Taste **z**, um das Modell an die Größe des Grafikbereichs anzupassen.

Klicken Sie auf der Voransichts-Symbolleiste

auf das Werkzeug Ausschnitt vergrößern

Vergrößern Sie die Rückseite des Autos, wie in der Abbildung dargestellt.

Klicken Sie auf der Voransichts-Symbolleiste

auf das Werkzeug **Ausschnitt vergrößern** um es zu deaktivieren.

Klicken Sie auf der Skizzieren-Symbolleiste

auf das Werkzeug Linie . Der PropertyManager Linie einfügen wird eingeblendet.

Skizzieren Sie **vier Linien**, wie in der Abbildung dargestellt. Der erste Punkt ist deckungsgleich mit der oberen horizontalen Kante des Autos.

SolidWorks

Maschinenbaukonstruktion und Technologie

2 Skizzierwerkzeug "Linie" abwählen.

Klicken Sie im Grafikbereich mit der rechten Maustaste auf Auswählen.

3 Werkzeug "Skizzenverrundung" anwenden.

Klicken Sie auf der Skizzieren-Symbolleiste auf das Werkzeug

Skizzenverrundung . Der PropertyManager Skizzenverrundung wird eingeblendet.

Geben Sie 2 mm für den Verrundungsradius ein.

Klicken Sie auf den linken Endpunkt der horizontalen Linie.

Klicken Sie auf den **rechten Endpunkt** der horizontalen Linie.

Klicken Sie im PropertyManager

Skizzenverrundung auf OK

Klicken Sie im PropertyManager

Skizzenverrundung auf OK 🥑

4 Heckflügel bemaßen.

Klicken Sie auf der Skizzieren-Symbolleiste auf das Werkzeug

Intelligente Bemaßung . Das Symbol Intelligente Bemaßung

wird am Mauszeiger angezeigt.

Klicken Sie auf die **beiden** in der Abbildung hervorgehobenen Kanten.

Klicken Sie rechts auf eine **Position**.

Geben Sie die Bemaßung **3** mm ein.

Klicken Sie auf die **Kante** und den **Punkt**, die in der Abbildung hervorgehoben sind.

Klicken Sie rechts auf eine **Position**.

Geben Sie die Bemaßung 8 mm ein.

Klicken Sie auf die **beiden Punkte**, die in der Abbildung hervorgehoben sind.

Klicken Sie auf eine **Position** über dem Modell.

Geben Sie die Bemaßung **18** mm ein.

8

6

18

18

R2

R2

SolidWorks

Maschinenbaukonstruktion und Technologie

Klicken Sie auf die **beiden Kanten**, die in der Abbildung hervorgehoben sind.

Geben Sie die Bemaßung 6 mm ein.

Klicken Sie darüber und rechts auf eine **Position**.

Sketch9 (Skizze9) ist voll definiert und wird in Schwarz angezeigt.

Anmerkung: Klicken Sie bei Bedarf im

Dialogfeld **Modifizieren** auf das Symbol **Bemaßungsinhalt** umkehren.

Klicken Sie im PropertyManager

Bemaßung auf OK 🜌

5 Linear ausgetragenen Aufsatz erstellen.

Klicken Sie im BefehlsManager auf die Registerkarte **Features**. Die Features-Symbolleiste wird eingeblendet.

Klicken Sie auf das Werkzeug Linear ausgetragener

Aufsatz . Der PropertyManager Aufsatz-Linear austragen wird eingeblendet.

Klicken Sie auf der Voransichts-Symbolleiste auf

Isometrisch 🔯

Wählen Sie im Dropdown-Menü für die **Endbedingung** die Option **Mittig** aus.

Geben Sie 50 mm für die Tiefe ein.

Klicken Sie im PropertyManager Aufsatz-Linear

austragen auf **OK** . Boss-Extrude2 (Aufsatz-Linear austragen2) wird eingeblendet.

Klicken Sie auf der Voransichts-Symbolleiste auf

Schattiert mit Kanten 🧾

Klicken Sie auf eine Stelle im Grafikbereich. Zeigen Sie die Ergebnisse an.

6 Modell speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf Speichern

- Anmerkung: Drücken Sie die Taste s, um die vorherigen Befehle im Grafikbereich anzuzeigen.
- Anmerkung: Drücken Sie die g-Taste, um das Vergrößerungsglas zu aktivieren. Mit dem Vergrößerungsglas können Sie ein Modell untersuchen und Elemente auswählen, ohne die Gesamtansicht des Modells zu ändern.

- 6

- 间 - 🍘 - 😻 - 🐻

Einfügen von Verrundungen

1 Verrundungs-Feature einfügen.

Mit Verrundungen wird eine abgerundete interne oder externe Fläche am Teil erstellt. Sie können alle Kanten einer Fläche, ausgewählte Flächensätze, ausgewählte Kanten oder Kantenzüge verrunden.

Klicken Sie auf der Voransichts-Symbolleiste auf Verdeckte Kanten ausgeblendet

Klicken Sie auf der Features-Symbolleiste auf das Werkzeug **Verrundung O** Der PropertyManager **Verrundung** wird eingeblendet.

Klicken Sie im PropertyManager Verrundung auf die Registerkarte Manuell. Klicken Sie auf den Verrundungstyp Konstanter Radius.

Geben Sie 3 mm für den Radius ein.

Klicken Sie auf die **8 Kanten** an der oberen rechten Seite des Autos. Die ausgewählten Kanten werden im Feld **Zu verrundende Elemente** angezeigt.

Drehen Sie das Auto mit der mittleren Maustaste, um die linke Seite des Fahrzeugs anzuzeigen.

Klicken Sie auf die 8 Kanten an der oberen linken Seite des Autos.

Klicken Sie auf die **obere Vorderkante** des Autos. Die ausgewählten Kanten werden im Feld **Zu verrundende Elemente** angezeigt.

Drehen Sie das Auto mit der mittleren Maustaste, um die Unterseite anzuzeigen.

Klicken Sie auf die **unteren Kanten** des Autos. Wählen Sie weder die beiden gekrümmten noch die beiden geraden hinteren Kanten aus (siehe Abbildung). Die ausgewählten Kanten werden im Feld **Zu verrundende Elemente** angezeigt.

Klicken Sie im PropertyManager **Verrundung** auf **OK** . Zeigen Sie das Feature Fillet1 (Verrundung 1) im FeatureManager an.

Klicken Sie auf der Voransichts-Symbolleiste auf **Isometrisch**

2 Zweites Verrundungs-Feature einfügen. Cockpit-Bereich verrunden.

Klicken Sie auf der Features-Symbolleiste auf das

Werkzeug Verrundung <u></u>. Der PropertyManager Verrundung wird eingeblendet.

Klicken Sie im PropertyManager **Verrundung** auf die Registerkarte **Manuell**. **Konstanter Radius** ist standardmäßig ausgewählt.

Geben Sie **12** mm für den **Radius** ein.

SolidWorks Maschinenbaukonstruktion und Technologie

Klicken Sie auf die in der Abbildung hervorgehobene **hintere Kante**. Kantel wird im Feld Zu verrundende Elemente angezeigt.

Klicken Sie im PropertyManager

Verrundung auf **OK** Seigen Sie das Feature Fillet2 (Verrundung 2) im FeatureManager an.

3 Modell speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf

Speichern 🖩

4 Verrundung mit variablem Radius erstellen. Drehen Sie das Modell mit der mittleren Maustaste, um die hinteren gekrümmten Kanten des Fahrzeugs anzuzeigen.

Klicken Sie auf der Features-Symbolleiste auf das

Werkzeug Verrundung 🙆. Der PropertyManager Verrundung wird eingeblendet.

Klicken Sie im PropertyManager **Verrundung** auf die Registerkarte **Manuell**. **Konstanter Radius** ist standardmäßig ausgewählt.

Wählen Sie unter Verrundungstyp die Option Variabler Radius aus.

Klicken Sie auf die beiden gekrümmten Kanten.

Klicken Sie und ziehen Sie die Felder **Variabler Radius** vom Modell weg.

Klicken Sie in das linke obere Feld Nicht zugeordnet.

Geben Sie **15** mm ein.

Klicken Sie in das rechte obere Feld Nicht zugeordnet.

Geben Sie **15** mm ein.

Klicken Sie in das linke untere Feld Nicht zugeordnet.

Geben Sie **5** mm ein.

Klicken Sie in das rechte untere Feld Nicht zugeordnet.

Geben Sie 5 mm ein.

Klicken Sie im PropertyManager Verrundung auf OK

Zeigen Sie das Feature VarFillet1 (Variabler Verrundungsradius 1) im FeatureManager an.

Klicken Sie auf der Voransichts-Symbolleiste auf

Isometrisch 🔯

Klicken Sie auf der Voransichts-Symbolleiste auf

Schattiert 🥑

5 Modell speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf

Speichern 🖩

Zeigen Sie das Modell an.

Erstellung einer Baugruppe

Erstellen Sie eine Baugruppe mit dem Teil Race Car Block (Rennwagenblock). Fügen Sie die Räder und Achsen ein.

1 Baugruppe erstellen.

Klicken Sie auf der Menüleisten-Symbolleiste auf

Baugruppe aus Teil/Baugruppe erstellen 🔊

Klicken Sie auf **OK**, um die Standard-Baugruppenvorlage zu übernehmen. Der PropertyManager **Baugruppe beginnen** wird eingeblendet.

Im Feld **Geöffnete Dokumente** wird die Teildatei Race Car Block (Rennwagenblock) angezeigt.

2 Komponente platzieren.

Klicken Sie im PropertyManager Baugruppe beginnen auf **OK** . Der (f) Race Car Block (Rennwagenblock) wird im FeatureManager der Baugruppe als "fixiert" angezeigt.

3 Ebenen deaktivieren.

Klicken Sie bei Bedarf in der Menüleiste auf **Ansicht**, und deaktivieren Sie **Ebenen**.

Anmerkung: Die erste der Baugruppe hinzugefügte Komponente ist standardmäßig fixiert. Eine fixierte Komponente kann nicht verschoben werden, es sei denn, Sie heben die Fixierung auf.

4 Isometrische Ansicht mit "Verdeckte Kanten ausgeblendet" festlegen.

Klicken Sie auf der Voransichts-Symbolleiste auf **Isometrisch** .

Klicken Sie auf der Voransichts-Symbolleiste auf

Drahtdarstellung

5 Baugruppe speichern.

Klicken Sie in der Menüleiste auf **Speichern**

Speichern Sie die Baugruppe im heruntergeladenen Ordner unter dem Namen Race Car (Rennwagen).

Anmerkung: Klicken Sie bei Bedarf auf Ansicht, und deaktivieren Sie Alle Beschriftungen.

Baugruppe beginnen	?
Hinweis	¥
Einzufügende(s) Teil/Baugrupp	e 🌣
Geöffnete Dokumente:	
👒 Race Car Block	
Durchsuchen	
Durchsuchen	
Durchsuchen Mini-Yorschau	*
Durchsuchen Mini-Yorschau Optionen	*
Durchsuchen Mini-Yorschau Optionen I Befehl ausführen bei Erstellung einer neuen Baugruppe	*
Durchsuchen Mini-Yorschau Optionen Befehl ausführen bei Erstellung einer neuen Baugruppe	*

Maschinenbaukonstruktion und Technologie

6 Achsen einfügen.

Klicken Sie in der Konstruktionsbibliothek auf das Teil **Axle** (Achse), und ziehen Sie es aus der Konstruktionsbibliothek.

Klicken Sie auf eine **Position** in der Nähe des rückwärtigen Fahrzeugbereichs. Der PropertyManager Komponenten einfügen wird eingeblendet. Eine zweite Achse wird am Mauszeiger angezeigt.

Ziehen Sie die **zweite Achse** zum vorderen Fahrzeugbereich. Klicken Sie auf eine **Position**.

Klicken Sie im PropertyManager **Komponenten einfügen** auf **Abbrechen X**. Zeigen Sie den FeatureManager an.

Axle <1> und Axle <2> werden angezeigt.

7 Erstes Rad einfügen.

Klicken Sie in der Konstruktionsbibliothek auf das Teil **Wheel** (Rad), und ziehen Sie es aus der Konstruktionsbibliothek.

Klicken Sie auf eine **Position** in der Nähe des rechten rückwärtigen Fahrzeugbereichs. Der PropertyManager Komponenten einfügen wird eingeblendet. Ein zweites Rad wird am Mauszeiger angezeigt.

8 Restliche drei Räder einfügen.

Fügen Sie das **zweite Rad** in der Nähe des rechten vorderen Fahrzeugbereichs ein; Wheel<2> (Rad 2).

Fügen Sie das **dritte Rad** in der Nähe des linken rückwärtigen Fahrzeugbereichs ein; Wheel<3> (Rad 3).

Fügen Sie das **vierte Rad** in der Nähe des linken vorderen Fahrzeugbereichs ein; Wheel<4> (Rad 4).

Klicken Sie im PropertyManager **Komponenten einfügen** auf **Abbrechen X**. Zeigen Sie den aktualisierten FeatureManager an.

9 Ursprünge deaktivieren.

Klicken Sie in der Menüleiste auf Ansicht, und deaktivieren Sie Ursprünge.

10 Modell speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf Speichern 📠.

Maschinenbaukonstruktion und Technologie

11 Werkzeug "Komponente drehen" anwenden.

Drehen Sie die beiden Räder auf der linken Seite des Modells.

Klicken Sie im BefehlsManager auf die Registerkarte **Baugruppe**.

Klicken Sie im FeatureManager auf Wheel<3> (Rad<3>). Das ist das linke Hinterrad.

Klicken Sie auf der Baugruppen-Symbolleiste auf das Werkzeug **Komponente drehen S**. Der PropertyManager **Komponente drehen** wird eingeblendet.

Drehen Sie Wheel<3>, wie in der Abbildung dargestellt.

Klicken Sie im aufschwingenden FeatureManager auf Wheel<4> (Rad<4>). Das ist das linke Vorderrad.

Drehen Sie Wheel<4>, wie in der Abbildung dargestellt.

Klicken Sie im PropertyManager Komponente drehen auf OK

12 Modell neu aufbauen.

Klicken Sie auf der Menüleiste auf Modellneuaufbau

Einfügen von Verknüpfungen

Eine Baugruppe ist ein Dokument, in dem mindestens zwei Teile und andere Baugruppen (Unterbaugruppen) miteinander verknüpft sind. In einer Baugruppe werden sowohl Teile als auch Unterbaugruppen als Komponenten bezeichnet. Mit Hilfe von Verknüpfungen werden Beziehungen zwischen Komponenten erstellt. Flächen stellen die am häufigsten verwendete Geometrie bei Verknüpfungen dar. In diesem Fall werden die vorhandenen Unterbaugruppen verknüpft, um basierend auf dem von Ihnen erstellten Autoteil eine Baugruppe zu erstellen.

Es gibt drei Typen von Verknüpfungen:

Standardverknüpfungen, Erweiterte Verknüpfungen und Mechanische Verknüpfungen.

Standardverknüpfungen

- Deckungsgleich
- Parallel
- Senkrecht
- Tangential
- Konzentrisch
- Sperren
- Abstand
- Winkel

Erweiterte Verknüpfungen

- Symmetrisch
- Breite
- Bahnverknüpfung
- Linear/Linearkupplung
- Abstand/Winkel

Sie können zur Erstellung einer Verknüpfung viele unterschiedliche Geometrietypen auswählen:

- Flächen
- Ebenen
- Kanten
- Eckpunkte
- Skizzenlinien und Punkte
- Achsen und Ursprünge

Anmerkung:	In diesem Abschnitt positionieren Sie das Modell
	so, dass das richtige Skizzenelement angezeigt
	wird Verwenden Sie dazu das Werkzeug Ausschnitt

vergrößern auf der Voransichts-Symbolleiste, die mittlere Maustaste und die Tasten **f** und **z**.

🕲 Verknüpfen	?
🗸 🗶 🖒	
S Verknüpfungen 🔗 Analyse	1
Verknüpfungsauswahl	~
Standardverknüpfung <u>e</u> n	~
Deckungsgleich	
Parallel	
L Senkrecht	
Tangential	
Konzentrisch	
Sperren	
1.00mm	
30.00Grad	
Verknüpfungsausrichtung:	
$\Psi\Psi$ Ψ_{Δ}	

Erwe	iterte Verkn <u>ú</u> pfungen	*
	Symmetrisch	
M	Breite	
M	Bahnverknüpfung	
4	Linear/Linearkupplung	
0		
	1.00mm	
	1.00mm 30.00Grad	
	1.00mm 30.00Grad Verknüpfungsausrichtung:	

Maschinenbaukonstruktion und Technologie

1 Achsen mit der Karosserie verknüpfen.

Erstellen Sie eine deckungsgleiche Verknüpfung zwischen der Hinterachse und der Karosserie.

Klicken Sie auf der **Baugruppen**-Symbolleiste auf das Werkzeug

Verknüpfen S. Der PropertyManager Verknüpfen wird eingeblendet.

Tipp: Vergrößern/verkleinern bzw. drehen Sie die Ansicht, um die zu verknüpfenden Flächen oder Kanten leichter auswählen zu können.

> Klappen Sie den aufschwingenden FeatureManager Race Car (Rennwagen) im Grafikbereich auf.

Klicken Sie im aufschwingenden FeatureManager auf Race Car Block/ Right Plane (Rennwagenblock/Ebene rechts).

Klicken Sie im aufschwingenden FeatureManager auf Race Car Axle<1>/ Right Plane (Rennwagenachse 2/Ebene rechts). Standardmäßig ist der Verknüpfungstyp Deckungsgleich ausgewählt.

Die ausgewählten Ebenen werden im Feld **Verknüpfungsauswahl** angezeigt.

Klicken Sie auf Verknüpfung hinzufügen/fertig

stellen , um die Verknüpfung zu übernehmen.

2 Konzentrische Verknüpfung hinzufügen.

Erstellen Sie eine konzentrische Verknüpfung zwischen der Hinterachse und der Karosserie.

Ziehen Sie Axle<1>, wie in der Abbildung dargestellt.

Klicken Sie auf die **innere zylindrische Fläche** der hinteren Bohrung.

Klicken Sie auf die **zylindrische Außenfläche** von Axle<1>.

Standardmäßig ist der Verknüpfungstyp Konzentrisch ausgewählt.

Klicken Sie auf Verknüpfung hinzufügen/

fertig stellen , um die Verknüpfung zu übernehmen.

Anmerkung: In diesem Abschnitt positionieren Sie das

Modell so, dass das richtige

Skizzenelement

angezeigt wird. Verwenden Sie dazu das Werkzeug Ausschnitt vergrößern

, die mittlere Maustaste und die Tasten f und z.

42

Maschinenbaukonstruktion und Technologie

3 Deckungsgleiche Verknüpfung hinzufügen.

Erstellen Sie eine deckungsgleiche Verknüpfung zwischen der Vorderachse und der Karosserie.

Klicken Sie im aufschwingenden FeatureManager auf Race Car Block/Right Plane (Rennwagenblock/Ebene rechts).

Klicken Sie im aufschwingenden FeatureManager auf Race Car Axle<2>/Right Plane (Rennwagenachse 2/Ebene rechts).

Standardmäßig ist der Verknüpfungstyp Deckungsgleich ausgewählt.

Klicken Sie auf Verknüpfung hinzufügen/fertig stellen . um

die Verknüpfung zu übernehmen.

4 Konzentrische Verknüpfung hinzufügen.

Erstellen Sie eine konzentrische Verknüpfung zwischen der Vorderachse und der Karosserie.

Ziehen Sie Axle<2>, wie in der Abbildung dargestellt.

Klicken Sie auf die innere zylindrische Fläche der vorderen Bohrung.

Klicken Sie auf die zylindrische Außenfläche von Axle<2>.

Standardmäßig ist der Verknüpfungstyp Konzentrisch ausgewählt.

Klicken Sie auf Verknüpfung

hinzufügen/fertig stellen 📝

um die Verknüpfung zu übernehmen.

Im nächsten Abschnitt verknüpfen Sie die Räder mit den Achsen.

Maschinenbaukonstruktion und Technologie

1 Räder mit den Achsen verknüpfen. Erstellen Sie eine konzentrische Verknüpfung zwischen der Vorderachse und dem rechten Vorderrad.

Klicken Sie auf die **zylindrische Außenfläche** von Axle<2>.

Klicken Sie auf die **zylindrische** Innenfläche des rechten Vorderrades Wheel<2>.

Standardmäßig ist der Verknüpfungstyp Konzentrisch ausgewählt.

Klicken Sie auf Verknüpfung

hinzufügen/fertig stellen , um die Verknüpfung zu übernehmen.

Anmerkung: Positionieren Sie das Modell so, dass das richtige Skizzenelement angezeigt wird.

Lektion 2: Konstruieren des Rennwagens

SolidWorks Maschinenbaukonstruktion und Technologie

2 Abstandsverknüpfung erstellen.

Erstellen Sie eine Abstandsverknüpfung zwischen der äußeren Endfläche der rechten Vorderachse Axle<2> und der Außenfläche des rechten Vorderrades Wheel<2>.

Klicken Sie auf die **äußere Endfläche** der rechten Vorderachse Axle<2>.

Klicken Sie auf der Voransichts-Symbolleiste

auf Schattiert 🧾

Klicken Sie auf die **Außenfläche** des rechten Vorderrades Wheel<2>, wie in der Abbildung dargestellt.

Klicken Sie auf das Werkzeug

Abstandsverknüpfung 🖃.

Geben Sie 7 mm ein.

Klicken Sie auf Verknüpfung hinzufügen/

fertig stellen , um die Verknüpfung zu übernehmen.

3 Die drei restlichen R\u00e4der mit der Vorder- bzw. Hinterachse verkn\u00fcpfen. Erstellen Sie mit den gleichen Verfahren wie oben konzentrische Verkn\u00fcpfungen zwischen den Achsen und R\u00e4dern.

Erstellen Sie Abstandsverknüpfungen zwischen der äußeren Endfläche der Achsen und der Außenfläche der Räder.

Klicken Sie im PropertyManager Verknüpfen

auf **OK** 론

Maschinenbaukonstruktion und Technologie

4 Erstellte Verknüpfungen anzeigen. Klappen Sie den Ordner Verknüpfungen im FeatureManager auf.

Erstellte Verknüpfungen anzeigen.

5 Modell speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf **Speichern**

Berechnen des Gewichts des Rennwagens

Wenn Sie das Auto fertig gestellt haben und ins Rennen schicken möchten, darf es nicht weniger als 55 Gramm wiegen. Dieses Mindestgewicht schließt die CO₂-Patrone nicht ein. Überprüfen Sie das Gewicht des Modells. Wenden Sie dazu das Werkzeug. **Masseneigenschaften** an.

 Klicken Sie im BefehlsManager auf die Registerkarte **Evaluieren**. Klicken Sie auf der Evaluieren-Symbolleiste auf

Masseneigenschaften . Das Dialogfeld Masseneigenschaften wird eingeblendet.

Klicken Sie auf die Schaltfläche **Optionen**.

Aktivieren Sie die Option Benutzerdefinierte Einstellungen.

Geben Sie 4 für Dezimalstellen ein.

Klicken Sie auf OK.

Die Masse beträgt 54,9815 Gramm.

Anmerkung: Die Masse kann unterschiedlich sein, wenn Sie nicht alle oder zuviele Kanten verrundet haben.

Es kommen später noch Führungsösen, Farbe und Abziehbilder hinzu, und das Modell wird geschliffen. Verwenden Sie diese Masse daher als Überschlagswert, und wiegen Sie vor dem Rennen auf jeden Fall das fertige Auto. Am Ende dieser Lektion finden Sie eine Liste mit wichtigen, im Regelwerk enthaltenen Abmessungsanforderungen.

Anmerkung: Die Masse des Axle-Teils beträgt bei Verwendung von 2024 Alloy (Legierung 2024) 0,9896 Gramm. Würde man das Axle-Teil auf AISI 304 umstellen, dann wäre die Gesamtmasse des Rennwagens Race Car etwa 3,67 g größer. Sie können dies als eine Übung nachprüfen.

Schließen Sie das Dialogfeld Masseneigenschaften.

Maschinenbaukonstruktion und Technologie

2 Modell speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf **Speichern**

Berechnen der Gesamtlänge des Rennwagens

Wenn Sie den Wagen fertig gestellt haben und ins Rennen schicken möchten, darf er eine Gesamtlänge von 210 mm nicht überschreiten,

Interferenzprüfung	Bohrungs	ausrichtung	Messen	Masseneigenschaften
Zusammenbauen	Layout	Skizze	Evaluier	en

und die Räder müssen einen Außendurchmesser von mindestens 26 mm und höchstens 34 mm aufweisen. Wenden Sie das Werkzeug **Messen** an, um diese Abmessungen der Baugruppe Race Car zu ermitteln.

1 Gesamtlänge des Wagens messen.

Klicken Sie auf der Voransichts-Symbolleiste auf die Ansicht **Rechts**

Klicken Sie auf der Evaluieren-Symbolleiste auf das Werkzeug Messen . Das Dialogfeld Messen – Race Car wird eingeblendet.

Klicken Sie auf die **Vorderkante** des Rennwagens. **Vergrößern** Sie bei Bedarf die Ansicht, um die Kante auszuwählen.

Klicken Sie auf die **hintere Kante** des Rennwagens. Anmerkung: Wählen Sie eine Kante aus, nicht einen Punkt oder eine Fläche. Zeigen Sie die Ergebnisse an.

Anmerkung: Der Balsablock hat eine Größe von 223 x 50 x 65 mm. Wenn Sie für die maschinelle Bearbeitung des Fahrzeugs eine Haltevorrichtung verwenden möchten, müssen Sie darauf achten, dass die Konstruktion nicht länger als 210 mm ist. Die meisten Haltevorrichtungen verfügen über eine Nasenplatte, die die Vorderseite des Balsablocks hält. Wenn Ihre Konstruktion zu lang ist, kann der Schaftfräser oder die Haltevorrichtung beschädigt werden. 2 Raddurchmesser von "Wheel<2>" messen. Klicken Sie mit der rechten Maustaste in das Feld Auswahl.

Klicken Sie auf Auswahl aufheben.

Klicken Sie auf den **Durchmesser** des Vorderrades Wheel<2>. Der Durchmesser von Wheel<2> beträgt 32 mm.

Anmerkung: Wie Sie wissen, muss der

Raddurchmesser zwischen 26 mm und 34 mm liegen.

Maschinenbaukonstruktion und Technologie

 Abstand zwischen den Mittelpunkten der beiden Radnaben messen.
Klicken Sie mit der rechten Maustaste in das Feld Auswahl.

Klicken Sie auf Auswahl aufheben.

Klicken Sie auf die Vorderfläche der Radnabe des Vorderrades Wheel<1>.

Klicken Sie auf die **Vorderfläche der Radnabe** des Hinterrades Wheel<2>. Der Abstand zwischen den Mittelpunkten der beiden Radnaben beträgt 135 mm.

Schließen Sie das Dialogfeld Messen – Race Car.

Erstellen einer Explosionsansicht

Für Herstellungszwecke ist es oft nützlich, die Komponenten einer Baugruppe aufzuspalten, um ihre Beziehungen visuell analysieren zu können. Durch das Auflösen der Ansicht einer Baugruppe können Sie die Komponenten getrennt betrachten.

Eine Explosionsansicht besteht aus einer oder mehreren Explosionsstufen. Eine Explosionsansicht wird mit der Baugruppenkonfiguration gespeichert, in der sie erstellt wird. Jede Konfiguration kann über eine Explosionsansicht verfügen.

Der PropertyManager Explosionsansicht wird eingeblendet, wenn Sie Explosionsansichten von Baugruppen erstellen oder bearbeiten.

Anmerkung: Während die Baugruppe aufgelöst ist, können ihr keine Verknüpfungen hinzugefügt werden.

1 Konfiguration "Explosionsansicht" erstellen. Klicken Sie auf der Voransichts-Symbolleiste auf

Isometrisch 🔎

Klicken Sie auf die Registerkarte

ConfigurationManager

Klicken Sie im ConfigurationManager mit der rechten Maustaste auf **Default** (Standard).

Klicken Sie auf das Werkzeug Neue Explosionsansicht **PropertyManager** Explosionsansicht wird eingeblendet.

Klicken Sie im Grafikbereich auf das **rechte Vorderrad** (Wheel<2>) des Modells. Eine Triade wird eingeblendet.

Klicken Sie auf den roten/orangen Pfeil der Triade, und ziehen Sie ihn nach rechts.

Anmerkung: Ziehen Sie das Rad weit genug nach rechts, um Platz für Axle<2> zu lassen.

Klicken Sie im Feld Einstellungen auf die Schaltfläche Fertig.

2 Explosionsstufe 2 erstellen.

Klicken Sie auf das linke Vorderrad (Wheel<4>) des Modells. Eine Triade wird eingeblendet.

Klicken Sie auf den **roten/orangen Pfeil der Triade**, und ziehen Sie ihn nach links. Klicken Sie im Feld **Einstellungen** auf die Schaltfläche **Fertig**.

3 Explosionsstufe 3 erstellen.

Klicken Sie auf das rechte Hinterrad (Wheel<1>) des Modells. Eine Triade wird eingeblendet.

Klicken Sie auf den **roten/orangen Pfeil der Triade**, und ziehen Sie ihn nach rechts. Ziehen Sie das Rad weit genug nach rechts, um Platz für Axle<1> zu lassen.

Klicken Sie im Feld Einstellungen auf die Schaltfläche Fertig.

4 Explosionsstufe 4 erstellen.

Klicken Sie auf das linke Hinterrad (Wheel<3>) des Modells. Eine Triade wird eingeblendet.

Klicken Sie auf den roten/orangen Pfeil der Triade, und ziehen Sie ihn nach links.

Klicken Sie im Feld **Einstellungen** auf die Schaltfläche **Fertig**. Zeigen Sie die Ergebnisse an.

5 Explosionsstufe 5 erstellen.

Klicken Sie auf die **Vorderachse** (Axle<2>) des Modells. Eine Triade wird eingeblendet.

Klicken Sie auf den **roten/orangen Pfeil der Triade**, und ziehen Sie ihn nach rechts.

Klicken Sie im Feld **Einstellungen** auf die Schaltfläche **Fertig**.

6 Explosionsstufe 6 erstellen.

Klicken Sie auf die **rechte Hinterachse** (Axle<1>) des Modells. Eine Triade wird eingeblendet.

Klicken Sie auf den **roten/orangen Pfeil der Triade**, und ziehen Sie ihn nach rechts.

Klicken Sie im Feld **Einstellungen** auf die Schaltfläche **Fertig**. Zeigen Sie das Modell an.

Klappen Sie die einzelnen **Explosionsstufen** im Feld **Explosionsstufen** auf. Zeigen Sie die Ergebnisse an.

7 Zum ConfigurationManager zurückkehren. Klicken Sie im PropertyManager

Explosionsansicht auf **OK**

8 Bewegungssimulation der Baugruppe erstellen.

Klappen Sie die Konfiguration **Default** (Standard) auf. Explosionsansicht1 wird eingeblendet.

Klicken Sie mit der rechten Maustaste auf **Explosionsansicht1**.

Klicken Sie auf **Explosionsansicht der Bewegungssimulation aufheben**. Zeigen Sie die Ergebnisse an. Klicken Sie im Dialogfeld**Bewegun** gssimulations-Steuerung auf die Schaltfläche Ausführen. Zeigen Sie eine Bewegungssimulatio n des Rennwagens (Race Car) an.

Schließen Sie das Dialogfeld Bewegungssimulati ons-Steuerung.

9 Zum FeatureManager zurückkehren. Klicken Sie auf die Registerkarte

FeatureManager 🛐.

10 Modell speichern.

Klicken Sie auf der Voransichts-

Symbolleiste auf Isometrisch 👰

Klicken Sie auf der Menüleiste auf

Speichern 📓

Die Baugruppe ist nun fertig gestellt.

Im nächsten Abschnitt öffnen Sie einzelne Teile der Baugruppe und wenden das Werkzeug Messen an.

Maschinenbaukonstruktion und Technologie

1 Baugruppen-Teil "Race Car Block" (Rennwagenblock) öffnen.

Klicken Sie im FeatureManager mit der rechten Maustaste auf (f) Race Car Block<1>.

Klicken Sie auf der Kontext-Symbolleiste auf

Teil öffnen Der FeatureManager für Race Car Block wird eingeblendet.

- Zur Baugruppe "Race Car" zurückkehren. Klicken Sie in der Menüleiste auf Fenster, Race Car. Die Baugruppe Race Car wird angezeigt.
- **3 Baugruppen-Teil "Axle" (Achse) öffnen.** Klicken Sie im FeatureManager mit der rechten Maustaste auf Axle<1>.

Klicken Sie auf der Kontext-Symbolleiste auf Teil

öffnen 📴. Der FeatureManager für Axle wird angezeigt.

4 Werkzeug "Messen" auf die Achse anwenden. Messen Sie die Gesamtlänge.

Klicken Sie auf der Voransichts-Symbolleiste auf

die Ansicht Vorderseite

Drücken Sie die Taste **F**, um das Modell an die Größe des Grafikbereichs anzupassen.

Klicken Sie auf der Evaluieren-Symbolleiste auf das Werkzeug

Messen . Das Dialogfeld Messen – Axle wird eingeblendet.

Klicken Sie auf die linke Kante von Axle<1>.

Vergrößern Sie bei Bedarf die Ansicht, um die Kante auszuwählen.

Klicken Sie auf die rechte Kante von Axle<1>.

Zeigen Sie die Ergebnisse an.

 5 Durchmesser der Achse bestimmen.
Klicken Sie mit der rechten Maustaste in das Feld Auswahl, wie in der Abbildung dargestellt.

Klicken Sie auf Auswahl aufheben.

Klicken Sie auf der Voransichts-Symbolleiste auf

die Ansicht Rechts

Fens	ter Hilfe 🖉 🗋 🕶 🤔 🕶 🔚 🕶 🗣
	Viewport
唱	Neues Fenster
	Überlappend
	Untereinander
	Nebeneinander
	Symbole anordnen
	Alle schließen
	Race Car, SLDASM
-	Race Cal Block.SLDPRT
_	Geöffnete Dokumente durchsuchen Strg-Tab
	Menü anpassen

Kante<1> Kante<2>	
Abstand: 50.00mm Delta X: 50.00mm Delta Y: 0.00mm Delta 2: 0.00mm Gesamtlänge: 18.85mm	
Mittelpunktabstand: 50mm	
Ť.	

Messen - Axle dd ▼ in Xyz	SLDPRT 🔀
Kante<1> Kante<2>	Auswahl aufheben
Abstand: 50 Delta X: 50.(Delta Y: 0.0(Menü anpassen
Delta Z: 0.00mm Gesamtlänge: 11	1 8.85mm

SolidWorks Maschinenbaukonstruktion und Technologie

Klicken Sie auf die **Umfangslinie** von Axle<1>. Der Durchmesser beträgt 3 mm.

Schließen Sie das Dialogfeld Messen – Axle.

Klicken Sie auf der Voransichts-

Symbolleiste auf Isometrisch 👰

6 Zur Rennwagen-Baugruppe

Race Car.

"Race Car" zurückkehren.

Klicken Sie in der Menüleiste auf Fenster,

Die Baugruppe Race Car wird angezeigt.

1 Diverse Bühnen- und Ansichtseinstellungen kennen lernen.

Klicken Sie auf der Voransichts-Symbolleiste auf den Dropdown-Pfeil des Werkzeugs **Bühne übernehmen**

Sehen Sie sich die Optionen an.

Klicken Sie auf Hintergrund - Weißes Umgebungslicht.

Zeigen Sie die Ergebnisse im Grafikbereich an.

Klicken Sie auf Einfaches Weiß.

Zeigen Sie die Ergebnisse im Grafikbereich an.

Klicken Sie auf Warme Küche.

Klicken Sie auf der Voransichts-Symbolleiste auf den Dropdown-Pfeil des Werkzeugs

Ansichtseinstellungen

Klicken Sie auf das Symbol Schatten im

Modus Schattiert 🧧

Drehen Sie das Modell mit der mittleren Maustaste. Zeigen Sie die Ergebnisse an.

2 Modell speichern.

Klicken Sie auf der Voransichts-Symbolleiste auf **Isometrisch**

Klicken Sie auf der Voransichts-Symbolleiste auf Schattiert

Klicken Sie auf der Menüleiste auf **Speichern** . Die Baugruppe ist nun fertig gestellt. Nachstehend finden Sie einige im Regelwerk enthaltene Bemaßungsanforderungen für die Baugruppe CO2 Cartridge Race Car (CO2-Patrone und Rennwagen). In der nächsten Lektion erstellen Sie eine bemaßte Zeichnung der Rennwagen-Baugruppe Race Car.

Bemaßungsanforderungen für den Rennwagen

Nachstehend finden Sie einige Bemaßungsanforderungen (R-Typ) für den Rennwagenblock (Race Car Block) und die Bohrung für die CO2-Patrone. Sehen Sie sich die Bemaßungsanforderungen an. Wenden Sie das Werkzeug Messen an, um sicherzugehen, dass Sie die Konstruktionsanforderungen erfüllen!

Karosseriebemaßungen gemäß Regelkatalog 2010 - 2011, kopiert aus dem entsprechenden Ordner der Website F1inschools.co.uk.

Body Dimensions

No.	Structure	Min.	Max.
3a.	Full body length *	170	210
3b.	Body height above the track*	3	10
	(excluding eyelets) including		
	side pods and wings		
3c.	Body width at side pods*	50	65
3d.	Total body width, including wheels *	60	85
(all c	limensions stated in millimetres, mm.)		
No.	Structure	Min. W	leight
3e.	Body weight without the CO, cartridge	55.0	
(all v	veight values stated in grams, g.)		
Зf.	No part of the body should be less th	nan 3mm	thick - this
excl	udes air foils / wings		
3g.	Maximum body height (including ad	erofoils)	60
* Λ	dditional Notae		
A	dultional notes		
3a. m	easured between front and rear externeties of	body.	
3b. m	neasured from track surface to the car body.	مامام معمام	and the
part c	of the car that flanks the sides of the cockpit area	a of the car	The
outsic	le face of the side pods when viewed from the	side the po	ods must
prese	nt a surface measuring not less than 30X15 mm	n - a sticke	r of
30X1	form will be applied to both side pods and mus	t be 100%	visible
but or	apable of taking the F1 in Schools promotional I	ogo decal.	e or nat
3d. m	neasured between outside edges of the wheels	or body, v	vhichever
is wir	lest		

Radbemaßungen gemäß Regelkatalog 2010 - 2011, kopiert aus dem entsprechenden Ordner der Website F1inschools.co.uk.

Konstruktions- und Bemaßungsanforderungen für die Anordnung der Räder gemäß Regelkatalog 2010 -2011, kopiert aus dem entsprechenden Ordner der Website F1inschools.co.uk.

Wheel Dimensions

4a. All F1 cars must have 4 wheels, two at the front, two at the rear and all wheels must be cylindrical.

4b. All wheels must fit the following criteria:

No.	Structure	Min.	Max.
4c.	Front wheel diameter *	26	34
4d.	Front wheel width *	15	19
	(at surface contact point)		
4e.	Rear wheel diameter *	26	34
4f.	Rear wheel width *	15	19
	(at surface contact point)		
(all c	limensions stated in millimetres, mm.)		

4g. All 4 wheels must touch the racing surface at the same time and all wheels should roll easily.

4h. Wheel dimensions must be consistent with the whole diameter/circumference of the wheel.

4i. A school/college/organised youth group may manufacture their own wheels, as long as they fit within the set specification.

* Additional Notes

4c. & 4e. measured to the extreme outer edges of each wheel. 4d. & 4f. measured between the extreme edges (including any protrusiona)

Wheel to Body Dimensions

The wheels are not allowed to be inside the car body and 100% of the wheel should be visible from the plan, side and views.

No.	Structure	
5a.	Front wheel visible	Yes/No
	(from the plan/side view)	
5b.	Rear wheel visible	Yes / No
	(from the plan/side view)	

Maschinenbaukonstruktion und Technologie

Konstruktions- und Bemaßungsanforderungen für den Antrieb gemäß Regelkatalog 2010 - 2011, kopiert aus dem entsprechenden Ordner der Website F1inschools.co.uk.

Konstruktions- und Bemaßungsanforderungen für Karosserie und Flügel gemäß Regelkatalog 2010 - 2011, kopiert aus dem entsprechenden Ordner der Website Flinschools.co.uk.

Power Plant

The event organisers will provide all CO₂ cartridges for the regional finals, national finals and World Championship.

No.	Structure	Min.	Max.
6a.	CO ₂ cartridge chamber diameter	19.1	19.9
6b.	Lowest point of chamber to the track surface *	22.5	30
6c.	Depth of hole	50	60
6d.	Wall thickness around cartridge *	3.1	-

6e. No paint is allowed inside the chamber (please seal off or protect the chamber while painting).

* Additional Notes

6b. measured from track surface to lowest surface part of the CO_2 chamber.

6d. clear space surrounding the CO₂ cartridge below 3 mm the car will not be allowed to race and loose marks accordingly.

Car Body and Wings

8a. The car body including side pods AND rear wing, must be machined from a single piece of balsa wood. Aerofolis at the front may be machined as part of the car body or from a seperate material - non-metallic.

8b. The design of the completed R-TYPE car should resemble an actual F1 car and shall include the following features:

An aerofoil on the front nose of the car, an aerofoil on the rear of the car and side pods on both sides of the car

No.	Structure	Min.	Max.		
8c.	Rear/Front Wing width	40	65		
	(where the wing is split by the body of the car,				
	the width is calculated as a sum of both parts.)				
8d.	Rear/Front wing depth	15	25		
8e.	Front wing thickness	1	12		
8f.	Rear wing thickness	3	12		

* Additional Notes

The whole of the front aerofoil when viewed from the side must be in front of the centre line of the front axle. The whole of the rear aerofoil when viewed from the side must be behind the centre line of the rear axle. A driver cockpit/driver is an opptional feature. Designs will be tested and examined for any implants or voids hidden within the car body.

8e/8f. The minimum depth of both front and rear wings is to be measured at the narrowest point on each wing.

Lektion 3 Erstellen einer Baugruppenzeichnung

Nach Abschluss dieser Lektion können Sie:

- Eine Zeichnung der Größe B von der Rennwagen-Baugruppe (Race Car) erstellen.
- Die Ansichtspalette des Task-Fensterbereichs anwenden.
- Eine isometrische Ansicht mit einer Stückliste einfügen.
- Den Ansichtsmaßstab ändern.
- Den Blattmaßstab ändern.
- Ein Zeichenblatt hinzufügen.
- Den Titelblock der Zeichnung bearbeiten.
- Eine Vorderansicht, Draufsicht und rechte Ansicht einfügen.
- Bemaßungen in Zeichenansichten einfügen.
- Eine isometrische Explosionsansicht erstellen.

Zeichnungen

Mit SolidWorks können Sie mühelos Zeichnungen von Teilen oder Baugruppen erstellen. Diese Zeichnungen sind voll assoziativ mit den Teilen und Baugruppen, die sie referenzieren. Wenn Sie in einer fertigen Zeichnung eine Bemaßung ändern, wird diese Änderung auch auf das Modell übertragen. Wenn Sie das Modell ändern, wird auch die Zeichnung automatisch aktualisiert.

Zeichnungen vermitteln drei Aspekte der Objekte, die sie darstellen:

- **Form** Ansichten vermitteln die Form eines Objekts.
- Größe Bemaßungen vermitteln die Größe eines Objekts.
- Zusatzinformationen Bezugshinweise vermitteln nichtgrafische Informationen zu Herstellungsverfahren, wie Bohrvorgängen, Erweiterungen, Farbauftrag, Beschichtung, Schliff, Wärmebehandlung, Entgratung usw.

Erstellen einer Baugruppenzeichnung

 Baugruppe "Race Car" öffnen. Klicken Sie auf Datei, Öffnen, oder klicken Sie auf der Menüleisten-Symbolleiste auf Öffnen 2.

		Ν.
Dateiname:	Race Car.SLDASM	Uffnen -
Dateityp:	Baugruppe (*.asm;*.sldasm)	Abbrechen
Description:	Keine> لې	\$
	🗌 Schnellansicht / Selektiv ölfnen	Referenzen

Wechseln Sie zum Ordner der Baugruppe Race Car.

Öffnen Sie die Baugruppe Race Car.

Der FeatureManager der Baugruppe Race Car wird angezeigt.

SolidWorks Baugruppenzeichnung

2 ANSI-Baugruppenzeichnungsdokument erstellen.

Klicken Sie auf der Menüleisten-Symbolleiste auf das Werkzeug Zeichnung aus Teil/Baugruppe erstellen

Übernehmen Sie die Standard-Zeichenvorlage.

Klicken Sie im Dialogfeld **Neues SolidWorks-Dokument** auf **OK**.

Klicken Sie im Dialogfeld **Blattformat/**größe auf **OK**.

Klicken Sie mit der rechten Maustaste in das Zeichenblatt.

Klicken Sie auf **Eigenschaften**. Das Dialogfeld **Blatteigenschaften** wird eingeblendet.

SolidWorks Maschinenbaukonstruktion und Technologie

Nächstes Ansichtsetikett: A

Nächstes Bezugsetikett: A

Contractor

Vorschau

Projektionstyp

Neu laden

O Erster Winkel

📀 Dritter Winkel

3 Wählen Sie die Blattgröße und den Projektionstyp. Wählen Sie unter Blattformat/-größe die Option **B** - (ANSI) Querformat aus.

> Der Standardname des Blattes lautet Sheet1

(Blatt1).	b - landscape.slddrt Durch	hsuchen
Aktivieren Sie unter Projektionstyp die Opt Dritter Winkel.	tion Verwende benutzerdefinierte Eigenschaftswerte	Breite: 431.80mm Höhe: 279.40mm
Der Blatt- Maßstab beträgt 1:5.	Standard	OK Abbrechen
Aktivieren Sie das Kontrollkästchen Blattformat anzeigen.		
Klicken Sie im Dialogs Blatteigenschaften au OK. Das Zeichenblatt v	feld 1f wird angezeigt.	
Dokumenteigenscha ften festlegen. Klicken Sie auf Extras, Optionen,		Zei Q SolidWorks Suche
oder klicken Sie auf der		to SolidWorks.
Menüleisten- Symbolleiste auf Optionen	Dokumentel genschaften Entwurfsnorm Systemoptionen Dokumentegenschaften Etkwurfsnorm Globale Zeichnungsnorm Beschriftungen ANSI Hittellnien/Mittelkreuze Mittellnien/Mittelkreuze	
Klicken Sie auf die	⊞ Tabellen	

Blatteigenschaften

Name:

Maßstab: 1

Blattformat/-größe Standardblattgröße

Blatt1

: 5

^

¥

Nur Standardformat anzeigen A (ANSI) Querformat A (ANSI) Hochformat

B (ANSI) Auctionnat C (ANSI) Querformat D (ANSI) Querformat E (ANSI) Querformat A0 (ANSI) Ouerformat

Klicken Sie auf die Registerkarte **Dokumenteigensc** haften.

Wählen Sie ANSI als Globale Zeichnungsnorm aus.

Anmerkung: Das Einheitensystem ist MMGS (Millimeter, Gramm, Sekunde).

4
Lektion 3: Erstellen einer

SolidWorks Baugruppenzeichnung

5 Beschriftungsschriftart festlegen. Klicken Sie auf den Ordner

Beschriftung.

Klicken Sie auf die Schaltfläche Schriftart. Das Dialogfeld Schriftart wählen wird eingeblendet. Wählen Sie die Schriftart für die Zeichnung aus.

Wählen Sie im Feld **Schriftart** die Option **Century Gothic** aus.

Wählen Sie im Feld **Schriftschnitt** die Option **Standard** aus.

Aktivieren Sie im Bereich **Höhe** die Option **Punkte**.

Wählen Sie 16.

6 Schließen Sie das Dialogfeld Schriftart wählen. Klicken Sie auf OK.

7 Zum Grafikbereich zurückkehren. Klicken Sie auf OK.

Systemoption	m tungen en/Mittelkreu t etiketten	Colobale Zeichnungsnorm ANSI Text Schriftart Century Gothic Anlagen
Schriftart: Century Gothic Conic Sachtary Gothic O Conic Sachtary Courier New O Estrangelo Edessa The Frances Font	Schriftschnitt: Standard Standard Kursiv Fett Fett Kursiv	Höhe: CK OEinheten 4.233535 CK Zelenehetand: 0.00mm Abbrechen O gunke 12 14 12 14 6
AaBbYyž	z	18 Derstellung Durghgestrichen Unterstrichen

8 Isometrische Ansicht einfügen.

Zeichenansichten können mithilfe der Ansichtspalette eingefügt werden. Die Ansichtspalette enthält Bilder von Standardansichten, Beschriftungsansichten, Schnittansichten und Abwicklungen (Blechteile) des ausgewählten Modells. Sie können die Ansichten in ein aktives Zeichenblatt ziehen, um eine Zeichenansicht zu erstellen.

Klicken Sie bei Bedarf im Task-Fensterbereich auf die

Registerkarte Ansichtspalette 🐺 .

Ziehen Sie das Symbol ***Isometrisch** in **Sheet1** (Blatt1).

Die isometrische Ansicht wird angezeigt. Der PropertyManager **Zeichenansicht1** wird eingeblendet.

Blattmaßstab und Anzeigemodus ändern. Aktivieren Sie die Option Benutzerdefinierten Maßstab verwenden.

Wählen Sie 1:1 im Dropdown-Menü aus.

Klicken Sie im Feld Anzeigeart auf Schattiert.

Klicken Sie im PropertyManager Zeichenansicht1 auf

ОК 🛃.

An	zeigeart	* •
Mal	Istab	~
0	Benutzerdefinierten Maß verwenden Benutzerdefiniert	stab
	Benutzerdefiniert Modell-Textmaßstab ve	^
Bei	1:2 2:3	~

10 Ursprünge deaktivieren.

Klicken Sie bei Bedarf in der Menüleiste auf **Ansicht**, und deaktivieren Sie **Ursprünge**.

11 Titelblock bearbeiten.

Der Titel des Zeichenblatts wird automatisch mit Informationen aus den Dateieigenschaften der Baugruppe ausgefüllt.

Blatt (Blatt1)			
	Blattformat bearbeiten		
-	Blattfokus sperren		
	Vollständig auf reduziert einstellen		
	Blatt hinzufügen		

Klicken Sie mit der rechten Maustaste in **Sheet1** (Blatt1). Klicken Sie nicht in die isometrische Ansicht.

Klicken Sie auf **Blattformat bearbeiten**.

Vergrößern Sie den Titelblock.

Doppelklicken Sie im Titelfeld auf Race Car.

Wählen Sie 22 im Dropdown-Menü aus.

Klicken Sie im PropertyManager **Bezugshinweis** auf **OK**

12 Zur Zeichnung zurückkehren.

Klicken Sie mit der rechten Maustaste auf **Blatt** bearbeiten.

Zeigen Sie die Ergebnisse an.

13 Zeichnung an die Größe des Blatts anpassen. Drücken Sie die Taste **F**.

14 Zeichnung speichern.

Klicken Sie auf **Speichern** . Übernehmen Sie den Standardnamen.

Klicken Sie auf Speichern.

Erstellen einer Stückliste

Fügen Sie eine Stückliste in die Zeichnung der Rennwagen-Baugruppe Race Car ein. Wenn Sie Komponenten in einer Baugruppe hinzufügen oder löschen, wird die Stückliste entsprechend der Änderungen automatisch aktualisiert, wenn Sie unter **Extras**, **Optionen, Dokumenteigenschaften, Detaillierung** die Option **Automatische Aktualisierung der Stückliste** auswählen.

Zu diesen Änderungen gehören u. a. das Hinzufügen, Löschen oder Ersetzen von Komponenten, das Ändern von Komponentennamen oder benutzerdefinierten Eigenschaften.

Blatt	(Blattformat
	Blatt bearbeite
	Blatt hinzufüge
	Kopieren
×	Löschen

崎 Stückliste	?
🗸 🗙	
Tabellenvorlage	\$
bom-material	9
Tabellenposition	⇒
Stücklistentyp	~
• Nur oberste Ebene	
ONur Teile	
O Mit Einzug	
Konfigurationen	⇒
Teilkonfigurationsgruppierung	ı ∧
Als eine Positionsnummer anzeigen	
 Konfigurationen desselben Teils als separate Elemente anzeigen 	
O Alle Konfigurationen desselben Teils als ein Element anzeigen	
O Konfigurationen mit demselben Namen als ein Element anzeigen	
Fehlendes Element behalten	*
Positionsnummern	*
Rand	*
Layer	*
-Kein-	-

SolidWorks Baugruppenzeichnung

1 Stückliste erstellen.

Klicken Sie in die isometrische Ansicht. Der PropertyManager Zeichenansicht1 wird eingeblendet.

Klicken Sie im BefehlsManager auf die Registerkarte **Beschriftung**.

Klicken Sie auf **Tabellen**, **Stückliste**. Der PropertyManager **Stückliste** wird eingeblendet. Übernehmen Sie die Standardeinstellungen. Nur oberste Ebene ist standardmäßig aktiviert, und im Feld **Tabellenvorlage** ist **bom-standard** ausgewählt.

Klicken Sie im PropertyManager Stückliste auf OK

Klicken Sie auf eine **Position** in der rechten oberen Ecke von **Sheet1** (Blatt1).

Zeigen Sie die Ergebnisse an.

Anmerkung: Wenn Sie eine neue Zeichnung öffnen, wählen

Sie ein Blattformat aus. Die Standardblattformate enthalten Verknüpfungen mit Systemeigenschaften und benutzerdefinierten Eigenschaften.

2 Zeichnung speichern.

Klicken Sie auf Speichern

Hinzufügen eines Blatts zur Zeichnung.

 Der Zeichnung ein Blatt hinzufügen. Klicken Sie mit der rechten Maustaste auf Blatt hinzufügen. Klicken Sie nicht in die isometrische Ansicht. Sheet2 (Blatt2) wird angezeigt.

Einfügen einer Vorderansicht, Draufsicht und rechten Ansicht mit der Ansichtspalette.

 Vorderansicht einfügen. Klicken Sie im Task-Fensterbereich auf die Registerkarte Ansichtspalette .

Ziehen Sie das Symbol ***Vorderseite** in die linke untere Ecke von **Sheet2** (Blatt2). Die Vorderansicht wird angezeigt. Der PropertyManager **Projizierte Ansicht** wird eingeblendet.

2 Draufsicht einfügen.

Klicken Sie auf eine **Position** genau über der Vorderansicht. Die Ansicht **Oben** wird eingeblendet.

3 Rechte Ansicht einfügen.

Klicken Sie auf eine **Position** links neben der Vorderansicht. Die Ansicht **Rechts** wird eingeblendet.

Klicken Sie im PropertyManager Projizierte Ansicht

auf **OK** *sehen* Sie sich die drei Ansichten an.

4 Blattmaßstab ändern.

Klicken Sie mit der rechten Maustaste in **Sheet2** (Blatt2). Klicken Sie nicht in eine Zeichenansicht.

Klicken Sie auf Eigenschaften.

Geben Sie als **Maßstab** das Verhältnis **1:2** ein.

Klicken Sie im Dialogfeld **Blatteigenschaften** auf **OK**.

Klicken Sie auf die **einzelnen Ansichten**, und ziehen Sie sie in Position.

5 Neuaufbau der Zeichnung durchführen.

Klicken Sie auf der Menüleisten-Symbolleiste auf Modellneuaufbau

Blatteigensch	naften	
Name: Bla Maßstab: 1	tt2 : 2	Projektionstyp OErster Winkel ODritter Winkel
Blattformat/-gr Standardbl Nur Sta	röße 🛛 🔓 lattgröße Indardformat anzeigen	
A (ANSI) (A (ANSI) (B (ANSI) (C (ANSI) (D (ANSI) (E (ANSI) (ANSI) (ANSI) (Querformat Hochformat Querformat Querformat Querformat Querformat	Neu laden
C:\Docum	nents and Settings\A mat anzeigen	Durchsuchen

SolidWorks Baugruppenzeichnung

6 Zeichnung speichern.

Klicken Sie auf Speichern

Einfügen einer Bemaßung in die rechte Zeichenansicht.

1 Bemaßung in die rechte Ansicht von "Sheet2" einfügen.

Vergrößern Sie die rechte Ansicht.

Klicken Sie auf der Skizzieren-Symbolleiste auf

Intelligente Bemaßung 🛷 .

Klicken Sie in der Ansicht Rechts auf die linke Kante des Rennwagens (Race Car).

Anmerkung: Wählen Sie eine Kante aus. Achten Sie auf das Feedback-Symbol.

Klicken Sie in der Ansicht Rechts auf die rechte Kante des Rennwagens (Race Car).

Klicken Sie auf eine **Position** unterhalb des Fahrzeugs, um die Bemaßung zu platzieren. Die Gesamtbemaßung des Fahrzeugs beträgt 210 mm.

2 Zwei Bemaßungen in die Vorderansicht einfügen.

Drücken Sie die Taste F, um das Modell an die Größe des Blattes anzupassen.

Vergrößern Sie die Vorderansicht.

Klicken Sie auf die linke Vorderkante des Rades.

Klicken Sie auf die rechte Vorderkante des Rades.

Klicken Sie auf eine **Position** unterhalb des Fahrzeugs, um die Bemaßung zu platzieren.

Klicken Sie auf die Unterkante des linken Vorderrades.

Klicken Sie auf die Oberkante des oberen Flügels.

Klicken Sie auf eine **Position** links neben dem Fahrzeug, um die Bemaßung zu platzieren.

Klicken Sie im PropertyManager Bemaßung auf **OK**

Drücken Sie die Taste **F**, um das Modell an die Größe des Blattes anzupassen. Zeigen Sie die Ergebnisse an.

SolidWorks Baugruppenzeichnung

Anmerkung: Ziel dieser Lektion ist es nicht, eine vollständig bemaßte technische Zeichnung zu erstellen. Vielmehr sollen einige grundlegende Schritte erläutert werden, die Ingenieure bei der Erstellung der Dokumentation für ein Produkt durchführen. Fügen Sie der Zeichnung weitere Bemaßungen und Informationen hinzu, falls dies für den Wettbewerb erforderlich ist.

Titelblock auf Blatt2 bearbeiten. 3

Der Titel des Zeichenblatts wird automatisch mit Informationen aus den Dateieigenschaften der Baugruppe ausgefüllt.

Klicken Sie mit der rechten M (Blatt2). Klicken Sie nicht in

Klicken Sie auf Blattformat bearbeiten

Vergrößern Sie den Titelblock.

Doppelklicken Sie auf Race Car

Wählen Sie 22 im Dropdown-Menü aus.

Klicken Sie im PropertyManager Bezugshinweis auf OK

Klicken Sie mit der rechten Maustaste auf **Blatt bearbeiten**

Blatt (Blattformat2) Blatt bearbeiten Blatt hinzufügen... Kopieren

Führen Sie einen **Neuaufbau** der Zeichnung durch.

Modell an die Größe des Blatts anpassen. 4 Drücken Sie die Taste F.

Zeichnung speichern. 5

Klicken Sie auf Speichern

Öffnen eines Teils der Baugruppe

Rennwagen-Baugruppe "Race Car" aus 1 "Sheet2" öffnen.

Klicken Sie mit der rechten Maustaste in die Vorderansicht

Klicken Sie auf **Baugruppe öffnen**. Die Baugruppe Race Car wird angezeigt.

Zur Baugruppenzeichnung "Race Car" 2 zurückkehren.

Klicken Sie in der Menüleiste auf Datei, Schließen. Die Zeichnung des Rennwagens (Race Car) wird angezeigt.

d	ie Ansich	n Sheet2 iten.	2						
orm	atierung								
AL	Century Gothic	✓ 24 ✓ 6	.35mm	BIU	s		± xx xx	£ jΞ	T
			Ē	3 6	20	ace	e (20	ar
			SC	CALE: 1	:2	WEIGH	T:		SHEE

Blatt (Blatt2)

Blattformat bearbeiten Blattfokus sperren

Vollständig auf reduziert einstellen

Im nächsten Abschnitt kehren Sie zu **Sheet1** (Blatt1) zurück und erstellen eine isometrische Explosionsansicht.

Erstellen einer Explosionsansicht der Baugruppe

1 Zu "Sheet1" zurückkehren. Klicken Sie unten im Grafikbereich auf die Registerkarte Sheet1 (Blatt1), um zu Sheet1 zurückzukehren.

2 Explosionsansicht erstellen.

Klicken Sie mit der rechten Maustaste in die isometrische Ansicht.

Klicken Sie auf **Eigenschaften**. Das Dialogfeld **Eigenschaften Zeichenansicht** wird eingeblendet.

Aktivieren Sie das Kontrollkästchen In Explosionsansicht anzeigen.

Lektion 3: Erstellen einer

Sheet1 Sheet2

SolidWorks Premium 2011

SolidWorks Baugruppenzeichnung

Klicken Sie im Dialogfeld Eigenschaften Zeichenansicht auf OK.

Ansichtsmaßstab ändern. 3 Klicken Sie in die isometrische Ansicht in Sheet1. Der PropertyManager Zeichenansicht1 wird eingeblendet.

Aktivieren Sie die Option Benutzerdefinierten Maßstab verwenden.

Wählen Sie **Benutzerdefiniert**

Geben Sie 1:1.5 ein.

Klicken Sie im PropertyManager Zeichenansicht1 auf OK

4 Zeichnung speichern.

Klicken Sie auf **Speichern** 🗐 Zeigen Sie die Ergebnisse an. Der Zeichnungsabschnitt dieses Projekts ist damit abgeschlossen. Sie haben auf Sheet1 (Blatt1) eine isometrische Explosionsansicht mit einer Stückliste auf oberster Ebene und auf Sheet2 (Blatt2) drei Ansichten mit eingefügten Bemaßungen erstellt.

SolidWorks Datei Bearbeiten Ansicht Einfügen Extras Fenster Hilfe 🖉 D · B · B · B · B · ? - - - X 1.0.N.* 計 68 0 0 D **7** Offset A Elemente spiegeln Intelligente Bemaßung Elemente Lineares Skizzenmuster Beziehungen trimmen übernehmen anzeigen/löschen Elemente Se fi 4 64 Layout anzeigen Beschriftung Skizze Evaluieren Office Produkte Q Q 🗞 🚼 🙀 🗍 - 6r -**B** >> 5 PARTPUNET O'Y Race Car Annotations Sheet1 🛨 🔚 Blattformat1 🗉 🚳 Zeichenansicht1 Stückliste1 ha Sheet2 + Blattformat2 🗄 🥸 Zeichenansicht2 😤 Zeichenansicht4

10.62in

10.68in 0in

An	zeigeart ØØØØ	
Ma	ßstab	
\sim		
0	Blattmaßstab verwende Benutzerdefinierten Maßstab verwenden	en
0	Blattmaßstab verwende Benutzerdefinierten Maßstab verwenden Benutzerdefiniert	•n

R Race Car

Unterdefiniert Bearbeiten Sheet1 1:5 🕏 😨

- 8×

1

Lektion 4 PhotoView 360™

Nach Abschluss dieser Lektion können Sie:

- PhotoView 360 laden.
- Eine PhotoView 360 Baugruppenkonfiguration erstellen.
- Das Werkzeug Erscheinungsbild auf die Rennwagen-Baugruppe Race Car anwenden.
- Das Werkzeug **Bühne** anwenden.
- Die Rennwagen-Baugruppe Race Car rendern.
- Das Werkzeug Abziehbild bei der Rennwagen-Baugruppe Race Car anwenden und bearbeiten.
- Nachvollziehen, wodurch ein Bild realistisch wirkt, und Änderungen vornehmen, um das Rendering realistischer zu gestalten.
- Das PhotoView 360 Bild speichern.

PhotoView 360

PhotoView 360 ist eine erstklassige Rendering-Lösung für die Erstellung fotorealistischer Bilder von 3D-CAD-Modellen. Mit PhotoView 360 können Sie Ihre Konstruktionen für Ihre Kollegen veranschaulichen. PhotoView 360 beinhaltet innovative Visualisierungseffekte wie benutzerdefinierte Beleuchtung und eine umfassende Bibliothek mit Erscheinungsbildern und Texturen sowie Hintergrundkulissen.

PhotoView 360 ermöglicht das Rendern eines Modells auf einer bestehenden Bühne mit Lichtquellen. Sie wählen eines der Studios aus, und die Bühne und die Lichtquellen werden automatisch hinzugefügt und an die Größe des Modells angepasst. Standardmäßig werden Bilder in den Grafikbereich gerendert. Sie können die Bilder auch in einer Vielzahl von Formaten für gedruckte Materialien und Webseiten als Datei speichern.

Mit PhotoView 360 können Sie die folgenden Rendering-Elemente und mehr definieren und ändern:

- ∎ Bühne
- Erscheinungsbilder
- Abziehbilder
- Beleuchtung
- Bildausgabeformate

Aktivieren von PhotoView 360

Als Rendering bezeichnet man das Anwenden von Erscheinungsbildern, Bühnen, Beleuchtung und Abziehbildern auf das Modell.

1 Rennwagen-Baugruppe öffnen.

Klicken Sie auf der Menüleisten-Symbolleiste auf

Wechseln Sie zum Ordner der Rennwagen-Baugruppe Race Car im PhotoView-Ordner,

<u>S</u> uchen in:	🔁 PhotoView 🛛 🗖 📀 🌶	€ 🛄 😂
📲 Race Car.	SLDASM	
Datei <u>n</u> ame:	Race Car.SLDASM	Ŭ <u>f</u> fnen ▼
Datei <u>t</u> yp:	Baugruppe (*.asm;*.sldasm)	Abbrechen
Description:	<keine></keine>	
	Schnellansicht / Selektiv öffnen	Referenzen
	<u>R</u> eduziert	

oder verwenden Sie die von Ihnen erstellte Baugruppe.

Öffnen Sie die Baugruppe Race Car.

Die Baugruppe Race Car wird im Grafikbereich angezeigt.

Office Produkte

Simulation

1.2

SolidWorks

Simulation

ج 🖻 - 🗶 -

9

Toolbox

P

Toolbox

Office

SolidWork

e

Routing

16

Routing

Evaluieren Render-Werkzeuge

Schattiert mit Kanten Zeigt eine schattierte Ansicht des Modells

mit seinen Kanten an.

PhotoView ScanTo3D SolidWorks SolidWorks SolidWorks SolidWorks

SolidWorks

Maschinenbaukonstruktion und Technologie

2 PhotoView 360 aktivieren.

Klicken Sie im BefehlsManager auf die Registerkarte **Office Produkte**. Sehen Sie sich die Optionen an.

Klicken Sie im BefehlsManager auf

die Registerkarte **PhotoView 360** . PhotoView 360 wird in der Menüleiste angezeigt.

Klicken Sie auf der Voransichts-Symbolleiste auf **Schattiert mit Kanten**.

Anmerkung: Tangentiale Kanten werden angezeigt.

 Die verfügbaren PhotoView 360 Werkzeuge anzeigen. Klicken Sie in der Menüleiste auf PhotoView 360. Zeigen Sie das Dropdown-Menü und die verfügbaren Werkzeuge an.

01

1

Lädt oder entlädt die PhotoView 360

PhotoView 360

Zusatzanwendung.

m # .

133

360

Layout

0

PhotoView

360

Lajout

8

Motion

Evaluieren

8

ScanTo3D SolidWorks SolidWorks

Motion

E

DH

Erstellen einer Konfiguration für das Rendering

Es empfiehlt sich, eine Konfiguration der Baugruppe zu erstellen, die einzig und allein Rendering-Zwecken dient. So können Sie Änderungen an der Baugruppe vornehmen, ohne Dinge wie die Zeichnung zu beeinflussen.

1 Neue Konfiguration erstellen. Klicken Sie auf die Registerkarte

ConfigurationManager

Klicken Sie mit der rechten Maustaste auf **Race Car**.

Klicken Sie auf **Konfiguration hinzufügen**. Der PropertyManager **Konfiguration hinzufügen** wird eingeblendet.

Anmerkung: Die neue Konfiguration ist eine Kopie der aktiven Konfiguration.

Geben Sie im Feld Konfigurationsname den Namen PhotoView 360 ein.

Geben Sie im Feld Beschreibung ebenfalls PhotoView 360 ein.

Klicken Sie im PropertyManager Konfiguration hinzufügen auf **OK**

SolidWorks

Maschinenbaukonstruktion und Technologie

2 Die PhotoView 360 Konfiguration anzeigen. Klicken Sie im ConfigurationManager auf die Konfiguration PhotoView 360.

Klicken Sie auf die Registerkarte **DisplayManager** A. Im DisplayManager sind die auf das aktuelle Modell angewendeten Erscheinungsbilder, Abziehbilder, Lichtquellen, Bühnen und Kameras aufgelistet. Über den DisplayManager können Sie das angewendete Material anzeigen und Elemente hinzufügen, bearbeiten oder löschen. Der DisplayManager ermöglicht außerdem den Zugriff auf die PhotoView Optionen.

Klicken Sie auf das Symbol Ansicht Bühne, Beleuchtung und Kameras. Zeigen Sie die Details an.

Anmerkung: Im Fensterbereich Bühne, Beleuchtung und Kameras des DisplayManagers sind die auf das aktuelle Modell angewendeten Lichtquellen und Kameras sowie die Bühne aufgelistet.

3 Zum FeatureManager zurückkehren. Klicken Sie auf die Registerkarte

FeatureManager 🛐

Klicken Sie auf der Voransichts-Symbolleiste

auf Schattiert 🥑

Anmerkung: Die gegenwärtige Konfiguration ist PhotoView 360. Zeigen Sie die Ergebnisse im Grafikbereich an.

Erscheinungsbild

PhotoView 360 kann für das Rendern das Erscheinungsbild verwenden, das Sie beim Modellieren des Fahrzeugs (Race Car) angewendet haben. Allerdings ist dies für das Rendering nicht immer die optimale Lösung. Beim Modellieren des Rennwagenblocks (Race Car Block) wurde zum Beispiel Balsaholz verwendet, damit wir die Masse berechnen konnten. Dafür wurden die korrekten Materialeigenschaften benötigt, z. B. die Dichte.

Beim Rendering geht es jedoch eher um das Aussehen des Fahrzeugs. Aus welchem Material es besteht, ist von untergeordnetem Interesse. Zwar können mit PhotoView 360 Konstruktionsmaterialien wie Stahl, Kupfer, Aluminium und Kunststoff gerendert werden, Sie haben aber auch die Möglichkeit, Materialien wie Gummi, Leder, Stoff, Farbe usw. anzuwenden und zu rendern.

SolidWorks

Maschinenbaukonstruktion und Technologie

 Erscheinungsbild auf die Reifen anwenden. Klicken Sie in der Menüleiste auf PhotoView
 360. Zeigen Sie das Dropdown-Menü an.

Klicken Sie auf das Werkzeug

Erscheinungsbild bearbeiten . Der PropertyManager Farbe wird eingeblendet. Die Registerkarte **Grundlegend** ist standardmäßig ausgewählt.

6

5 Änderungen auf Teilebene anwenden. Sie können Änderungen auf Teil-, Featureoder Baugruppenebene anwenden.

Klicken Sie auf die Option Auf Teildokument-Ebene anwenden.

6 Änderungen auf die PhotoView 360 Konfiguration anwenden. Die PhotoView 360 Konfiguration ist die aktive Konfiguration. Aktivieren Sie die Option Dieser Anzeigestatus, wie in der Abbildung gezeigt.

Klicken Sie im Feld Ausgewählte Geometrie auf Flächen auswählen.

Klicken Sie im Grafikbereich auf die obere Fläche eines Reifens.

Die ausgewählte Fläche wird im Feld Ausgewählte Geometrie angezeigt.

Klicken Sie im Task-Fensterbereich auf die Registerkarte **Erscheinungsbilder, Bühnen und**

Abziehbilder (1997), wie in der Abbildung dargestellt.

Klappen Sie den Ordner Erscheinungsbilder (Farbe) auf.

Klappen Sie den Ordner Gummi auf.

Klicken Sie auf den Ordner Textur.

Klicken Sie auf Reifenprofil. Im Grafikbereich wird das Reifenprofil-Erscheinungsbild auf die vier Reifen angewendet.

Klicken Sie im PropertyManager Tire Thread auf \mathbf{OK}

Zeigen Sie die Ergebnisse im Grafikbereich an.

7 Erscheinungsbild auf den Front- und Heckflügel anwenden.

Klicken Sie in der Menüleiste auf **PhotoView 360**.

Klicken Sie im Dropdown-Menü auf das Werkzeug

Erscheinungsbild bearbeiten Der PropertyManager Farbe wird eingeblendet.

8 Änderungen auf Feature-Ebene anwenden.

> Sie können Änderungen auf Teil-, Feature- oder Baugruppenebene anwenden.

> Klicken Sie auf die Option Auf Teildokument-Ebene anwenden.

Aktivieren Sie die Option **Diesen Anzeigestatus**.

Klicken Sie auf das Feld **Features auswählen**.

Wählen Sie eine Farbe aus.

Klappen Sie im aufschwingenden FeatureManager Race Car auf.

Klappen Sie Race Car Block (Rennwagenblock) auf.

Klicken Sie auf **Boss-Extrude1** (Aufsatz-Linear austragen1). Boss-Extrude1 ist der Frontflügel. Boss-Extrude1 wird im Feld Ausgewählte Geometrie angezeigt.

Klicken Sie auf **Boss-Extrude2** (Aufsatz-Linear austragen2). Boss-Extrude2 ist der Heckflügel. Boss-Extrude12 wird im Feld Ausgewählte Geometrie **angezeigt**.

Anmerkung: Über die Farbpalette im Dialogfeld Farbe können Sie eine benutzerdefinierte Farbe erstellen und auswählen.

Anmerkung: Wenn erforderlich, wählen Sie ein einzelnes Boss-Extrude1-Feature, und führen Sie die Prozedur dann erneut für das zweite Feature Boss-Extrude2 aus.

Klicken Sie im PropertyManager

Farbe auf **OK** .

Zeigen Sie die Ergebnisse an.

Rendern

Als Rendering bezeichnet man das Anwenden von Erscheinungsbildern, Bühnen, Beleuchtung und Abziehbildern auf das Modell. Beim endgültigen Rendering werden alle Optionen angewendet, die in PhotoView 360 eingestellt wurden.

Anmerkung: Durch Vorgänge, die die Ansicht ändern (Zoomen, Verschieben oder Drehen), wird das Rendering entfernt.

1 Modell rendern.

Klicken Sie in der Menüleiste auf PhotoView 360.

Klicken Sie im Dropdown-Menü auf das Werkzeug **End-Rendering** . Zeigen Sie das Modell im Grafikbereich an.

Modifizieren des Erscheinungsbilds

1 Erscheinungsbild des Rennwagenblocks ändern.

Klicken Sie im Dialogfeld End-Rendering auf **Fenster schließen**.

Schließen Sie das Dialogfeld Race Car.

Klicken Sie in der Menüleiste auf PhotoView 360.

Klicken Sie im Dropdown-Menü auf das

Werkzeug Erscheinungsbild bearbeiten 💽. Der PropertyManager Farbe wird eingeblendet. Im Feld Ausgewählte Geometrie wird Race Car Block angezeigt.

Klicken Sie auf die Option Auf Teildokument-Ebene anwenden.

Klicken Sie im aufschwingenden FeatureManager Race Car auf **Race Car Block**. Im Feld **Ausgewählte Geometrie** wird Race Car Block angezeigt.

Klappen Sie den Ordner « Erscheinungsbilder, Bühnen u.. Erscheinungsbilder (Farbe) auf. 1 2 1 Klappen Sie den Ordner Metall auf. Erscheinungsbilder(color) Klicken Sie auf Silber 1 🗄 🗁 legacy 🚊 🧔 Metall Klicken Sie auf Mattes Silber. **2**1 🧔 Stahl 🧔 Chrom • Klicken Sie im PropertyManager matte silver 🧔 Aluminium 4 🧔 Bronze auf OK 📝 🧔 Messing 🧔 Kupfer 2 Modell rendern. 🧔 Nickel 🧔 Zink Klicken Sie in der Menüleiste auf PhotoView 360. 🧔 Magnesium 🧔 Eisen Klicken Sie im Dropdown-Menü auf das Werkzeug 🧔 Titan 🧔 Wolfram **End-Rendering .** Ergebnisse anzeigen. Gold 🧔 🧔 Silber

SolidWorks

Maschinenbaukonstruktion und Technologie

3 Zu SolidWorks zurückkehren. Klicken Sie im Dialogfeld End-Rendering auf Fenster schließen.

Schließen Sie das Dialogfeld Race Car.

Bühnen

PhotoView 360 Bühnen bestehen aus den Gegenständen, die im gerenderten Bild außerhalb des Modells zu sehen sind. Sie können sie sich in etwa wie eine virtuelle, das Modell umgebende Kiste oder Kugel vorstellen. Bühnen bestehen aus Hintergrund- und Vordergrundeffekten und Kulissen. In PhotoView 360 sind eine Reihe vordefinierter Bühnen verfügbar, um schnelle und einfache erste Renderings zu ermöglichen.

1 Das Werkzeug "Bühne bearbeiten" anwenden. Klicken Sie in der Menüleiste

auf PhotoView 360.

Klicken Sie im Dropdown-Menü auf das Werkzeug

Bühne bearbeiten 🚨

Klicken Sie im Meldungsdialogfeld auf **Ja**.

Der PropertyManager Bühne bearbeiten wird angezeigt.

Klicken Sie im Feld Hintergrund auf die Schaltfläche **Durchsuchen**.

Doppelklicken Sie auf **studio2**, wie in der Abbildung gezeigt.

Klicken Sie auf das Feld **Diese Konfiguration**.

Klicken Sie im PropertyManager **Bühne bearbeiten** auf **OK** . Zeigen Sie die Ergebnisse an.

2 Modell rendern.

Klicken Sie in der Menüleiste auf PhotoView 360.

Klicken Sie auf das Werkzeug **End-Rendering** . Zeigen Sie das Modell an.

3 Zum SolidWorks Grafikbereich zurückkehren.

Klicken Sie im Dialogfeld End-Rendering auf Fenster schließen.

Schließen Sie das Dialogfeld Race Car.

Abziehbilder

Abziehbilder sind Bildmotive oder Logos, die auf das Modell angewendet werden. In gewisser Weise sind sie mit Texturen vergleichbar, da sie genau wie diese auf die Oberfläche des Teils, Features oder der Fläche angewendet werden.

Bei Abziehbildern kann ein Teil des Bildes über eine Maske herausgefiltert werden. Die Maske sorgt dafür, dass das Material des zugrunde liegenden Teils durch das Abziehbild hindurch scheinen kann.

Abziehbilder können aus zahlreichen Bilddateien erstellt werden, einschließlich folgender Formate:

- Windows Bitmap (*.bmp)
- Tagged Image File (*.tif)
- Joint Photographic Expert Group (*.jpg)

1 Abziehbild zuweisen.

Klicken Sie in der Menüleiste auf **PhotoView 360**.

Klicken Sie im Dropdown-Menü auf das Werkzeug **Abziehbild** bearbeiten **a**.

Der PropertyManager **Abziehbilder** wird eingeblendet.

Klicken Sie auf eine Position auf der **rechten Seite** des Rennwagenblocks Race Car Block, wie in der Abbildung dargestellt.

Klicken Sie im Task-Fensterbereich auf die Registerkarte Erscheinungsbilder, Bühnen und Abziehbilder

SolidWorks Maschinenbaukonstruktion und Technologie

Klicken Sie auf den Ordner Abziehbilder.

Klicken Sie auf das Abziehbild SolidWorks.

Das Abziehbild wird auf dem Rennwagenblock Race Car Block angezeigt.

Aktivieren Sie die Option **Diese Konfiguration**.

Abziehbilder

Positionieren des Abziehbilds.

Klicken Sie im PropertyManager **Abziehbilder** auf die Registerkarte **Abbildung**.

Das Abziehbild ist noch nicht optimal auf dem Modell positioniert oder skaliert.

Wählen Sie **Projektion** im Dropdown-Menü des Feldes **Abbildung** aus.

Wählen Sie **ZX** im Dropdown-Menü für die Achsenrichtung aus.

Geben Sie **20.00** mm als **horizontale** Position ein.

Geben Sie **-12.50** mm als **vertikale** Position ein.

Geben Sie für **Rotation** den Wert **180.00 Grad** ein.

Klicken Sie auf eine Stelle im Grafikbereich. Zeigen Sie die Ergebnisse an.

Klicken Sie im PropertyManager Abziehbilder auf OK .

Zeigen Sie die Ergebnisse an.

Tipp: Erstellen Sie ein Abziehbild aus einer vorhandenen Datei.Wählen Sie die Registerkarte Bild aus. Klicken Sie unter dem Bilddateipfad auf die Schaltfläche Durchsuchen.

 Bilddateipfad:
xtures\decals\logo.bmp
Durchsuchen
Abziehbild speichern

6		Gr	öße/Ausrichtung ;	~
♥ ▲ ▲ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Eld Abblden Beleuchtung gewählte Geometrie A Race Car Block-1@Race		Ejxiertes Seitenverhältnis Breite auf Auswahl anpassen Highe auf Auswahl anpassen 212.43107619mm 92.40137852mm 92.40137852mm Seitenverhältnis:2.30 : 1 180.00Grad Horizontal spiegeln Vertikal spiegeln Auf Bild zurücksetzen	
٩bb	ildung 🔗			
	Projektion			
3	ZX 🔶			
-	20.00mm 🔶 😂			
t	-12.50mm 🗲 📚	1.500		
	and the second se			

2 Modell rendern.

Klicken Sie in der Menüleiste auf PhotoView 360.

Klicken Sie auf das Werkzeug **End-Rendering** . Zeigen Sie das Modell an.

3 Zum SolidWorks Grafikbereich zurückkehren. Klicken Sie im Dialogfeld End-Rendering auf Fenster schließen.

Schließen Sie das Dialogfeld Race Car.

SolidWorks

Maschinenbaukonstruktion und Technologie

Bearbeiten eines Abziehbildes

Klicken Sie auf die Registerkarte

DisplayManager 🧕

Klicken Sie auf das Symbol Ansicht

Abziehbilder ອ (siehe Abbildung).

Klappen Sie den Ordner Decals auf.

Klicken Sie mit der rechten Maustaste auf logo.

Klicken Sie auf **Abziehbild bearbeiten**. Der PropertyManager **Abziehbilder** wird eingeblendet.

Klicken Sie auf die Registerkarte Abbildung.

Mit dem **Abziehbildrahmen in der Grafikansicht** können Sie das Abziehbild verschieben, vergrößern, verkleinern oder drehen. Sehen Sie sich die endgültige Position des Abziehbilds im PropertyManager an.

Anmerkung: Ziehen Sie die Kanten oder einen Punkt innerhalb des Rahmens, um das Bild zu verschieben. Ziehen Sie die Ecken des Rahmens, um die Größe zu ändern. Ziehen Sie die Kugel in der Mitte, um das Abziehbild zu drehen.

Klicken Sie im PropertyManager Abziehbilder auf OK

4 Zum FeatureManager zurückkehren.

Klicken Sie auf die Registerkarte FeatureManager 🛐
5 Modell speichern.

Klicken Sie auf **Speichern** .

Klicken Sie auf **Alles speichern**. Damit ist dieser Abschnitt abgeschlossen. Viel Spaß beim Experimentieren mit Abziehbildern, Erscheinungsbildern, Beleuchtung, Bühnen usw.!

Ausgabeoptionen

In der Regel hat das Rendern auf dem Computerbildschirm vor allem zwei Gründe:

- Das Sichtbarmachen der Effekte von Erscheinungsbildern und Bühnen.
 Normalerweise ist dies ein Zwischenschritt auf dem Weg zur Endfassung.
- Das Erfassen des Bildes mit Bildschirmaufnahme-Software zur Verwendung in anderen Programmen. Die Bilder in diesem Handbuch wurden als Bildschirmaufnahmen erstellt.

Dabei handelt es sich jedoch selten um die Endfassung.

Rendern auf einen Drucker

Wenn ein gedrucktes Bild von einem Projekt erstellt werden soll, bietet es sich an, direkt auf einen Drucker zu rendern. Die Möglichkeiten dieser Option sind jedoch begrenzt, da das Hinzufügen von Beschriftungen, die Erfassung mehrerer Bilder auf einer Seite sowie die Bildbearbeitung ausgeschlossen sind. Das Rendern auf einen Drucker ist für Abbildungen in Microsoft[®] Word oder PowerPoint[®] nicht sinnvoll, da der Ausdruck in diesem Fall in eine Grafikdatei konvertiert werden müsste.

Im Folgenden werden einige gängige Anwendungsbereiche für Drucker-Renderings aufgelistet:

- Produktpräsentationen in der Eingangshalle vor Produktionsbeginn
- Schautafeln bei Konferenzen
- Projektberichte

Um ein gerendertes Bild über den Drucker auszugeben, verwenden Sie den Druckbefehl in PhotoWorks, nicht den SolidWorks-Druckbefehl.

Rendern in eine Datei

Die praktischste Ausgabemethode ist das Rendern eines Bildes in eine Datei. Bilddateien können für viele Verwendungszwecke eingesetzt werden, unter anderem für Webseiten, Schulungshandbücher, Verkaufsbroschüren und PowerPoint[®] Präsentationen.

Gerenderte Bilddateien lassen sich mit anderen Software-Programmen weiter bearbeiten. So können Beschriftungen oder Effekte hinzugefügt oder Änderungen vorgenommen werden, die über die Funktionen der PhotoWorks-Software hinausgehen. Diese Phase wird auch als Nachbearbeitung bezeichnet.

Dateitypen

Bilder können in den folgenden Dateiformaten gerendert werden:

- Windows Bitmap (*.bmp)
- TIFF (*.tif)
- TARGA (*.tga)
- Mental Ray Bühnendatei (* .mi)
- JPEG(*.jpg)
- PostScript (*.ps)
- Encapsulated PostScript (*.eps)
- Silicon Graphics 8 Bit RGBA (*.rgb)
- Portable pixmap (*.ppm)
- Utah/Wavefront Farbe, Typ A (*.rla)
- Utah/Wavefront Farbe, Typ B (*.rlb)
- Softimage Farbe (*.pic)

- Alias Farbe (*.alias)
- Abekas/Quantel, PAL (720x576) (*.qntpal)
- Abekas/Quantel, NTSC (720x486) (*.qntntsc)
- Mental images 8 Bit Farbe (*.ct)

Methoden zur Verbesserung der Rendering-Qualität

Die Qualität der Bilddatei kann je nach den in SolidWorks und PhotoWorks ausgewählten Optionen unterschiedlich ausfallen. Im Großen und Ganzen ist die Rendering-Qualität direkt proportional zur Rendering-Zeit. Nachstehend finden Sie einige Möglichkeiten, die Bildqualität zu verbessern.

- Verbesserung der Bildqualität in SolidWorks.
 In PhotoWorks werden beim Importieren der zu rendernden Modelle tessellierte Daten der schattierten SolidWorks-Modelle verwendet. Durch eine Steigerung der Qualität schattierter Bilder können gezackte Kanten bei gekrümmten Oberflächen reduziert werden.
- Erhöhung der Anzahl gerenderter Pixel.
 Verwenden Sie eine hohe DPI-Einstellung (Punkte pro Zoll), um mehr Pixel zu rendern.
- Aktivieren von Ray-Tracing.
 Ray-Tracing ermöglicht die Lichtreflexion und Brechung an Volumenkörpern.
- Verwenden einer höheren Kantenglättungseinstellung.
 Durch höhere Einstellungen für die Kantenglättung kann das gezackte Erscheinungsbild von nicht vertikalen oder horizontalen Kanten abgemildert werden.
- Erhöhung der Schattenqualität.
 Durch eine Erhöhung der Schattenqualität lässt sich eine Verbesserung der Schattenkanten erzielen.
- Aktivieren der indirekten Beleuchtung.
 Über die indirekte Beleuchtung wird Oberflächen Licht hinzugefügt, das von anderen Oberflächen reflektiert wurde.
- Aktivieren der kaustischen Beleuchtung. Durch die kaustische Beleuchtung wird die Darstellung mit Glanzlichtern, die durch Lichtbrechung durch transparente Materialien erzeugt werden, realistischer gestaltet.
- Aktivieren der globalen Beleuchtung.
 Die globale Beleuchtung umfasst alle Formen von indirekter Beleuchtung außer kaustischen Effekten. Darunter fallen auch Farbinformationen und Stärke.

Anzahl der zu rendernden Pixel

Um qualitativ hochwertige Ergebnisse bei einer effizienten Dateigröße zu erzielen, müssen wir die richtige Größe für das Rendern des Bildes bestimmen. Im Allgemeinen sollten Sie Bitmap-Bilder nicht vergrößern, da die Bildschärfe dadurch beeinträchtigt wird. Bilder können verkleinert werden, allerdings ist die ursprüngliche Datei dann größer als erforderlich.

Dpi und Ppi im Vergleich

Dpi (Dots per Inch) und Ppi (Pixels per Inch) werden häufig synonym verwendet, tatsächlich unterscheiden sich die beiden Begriffe jedoch. "Dots per Inch" (Punkte pro Zoll) ist die Anzahl der Punkte, die pro linearem Zoll gedruckt werden. "Pixels per Inch" (Pixel pro Zoll) bezeichnet die Auflösung eines auf einen Bildschirm projizierten Bildes.

Berechnung der korrekten Anzahl von Pixeln

Frage: Wie wird die Anzahl der für die Endfassung zu rendernden Pixel berechnet?

Antwort: Nehmen Sie die Ausgabemethode als Grundlage.

Im Allgemeinen wird für Webseiten eine Auflösung von 72 dpi verwendet. Für Zeitungen ist eine Auflösung von 125 dpi bis 170 dpi üblich. Qualitativ hochwertige Broschüren und Zeitschriften weisen eine Auflösung von 200 dpi bis 400 dpi auf. Bei Büchern reicht die Spanne im Allgemeinen von 175 dpi bis 350 dpi. Für PowerPoint Präsentationen empfiehlt sich in der Regel 96 ppi.

Wenn die Ausgabe auf einem Drucker erfolgen und das Bild wie ein Foto aussehen soll, können 300, 600 oder 1200 dpi erforderlich sein.

Multiplizieren Sie die Druckerauflösung in dpi (Punkte pro Zoll) mit der gewünschten Größe in Zoll.

Die korrekte Anzahl der Pixel kann berechnet und direkt eingegeben werden. Sie haben aber auch die Möglichkeit, die Bildgröße in Zentimeter oder Zoll und die Punkte pro Zoll (dpi) anzugeben und das Ergebnis von PhotoWorks berechnen zu lassen. Maschinenbaukonstruktion und Technologie

 PhotoView 360 Optionen anzeigen. Im PropertyManager PhotoView Optionen werden Einstellungen für PhotoView 360, darunter die Größe des Ausgabebilds und die Render-Qualität, festgelegt.

Klicken Sie in der Menüleiste auf **PhotoView 360**.

Klicken Sie auf das Werkzeug **Optionen (See State 1998)**. Der PropertyManager **PhotoView 360 Optionen** wird eingeblendet.

Betrachten Sie die verfügbaren Optionen und Standardeinstellungen.

Klicken Sie im PropertyManager auf **OK**

2 Alle SolidWorks Modelle schließen. Klicken Sie in der Menüleiste auf Fenster, Alle schließen. Damit ist dieser Abschnitt abgeschlossen.

Lektion 5 Analyse

Nach Abschluss dieser Lektion können Sie:

- Den Heckflügel des Rennwagenblocks (Race Car Block) ändern, um die Masse zu erhöhen.
- Das Werkzeug Messen anwenden.
- Das Werkzeug Masseneigenschaften anwenden.
- SolidWorks SimulationXpress[™] auf das Teil Axle-A anwenden.
- Die SolidWorks SimulationXpress[™] Analyse speichern.
- SolidWorks Flow SimulationTM auf die anfängliche Baugruppe Race Car Block anwenden.
- SolidWorks Flow Simulation auf die endgültige Baugruppe Race Car (Rennwagen) anwenden.
- Die Ergebnisse vergleichen.
- Die SolidWorks Flow Simulation Analyse speichern.

Ändern des Heckflügels

In Lektion 2 haben Sie die Baugruppe Race Car erstellt. Sie haben das Werkzeug

Masseneigenschaften

angewendet und die Masse des Rennwagens (Race Car) ohne

Dateiname:	Race Car.SLDASM	~	Öffnen 🝷
Dateityp:	Baugruppe (*.asm;*.sldasm)	~	Abbrechen
Description:	<keine> SpeedPak verwenden Schnellansicht / Selektiv öffnen Reduziert</keine>		Referenzen)

Farbe, Abziehbilder, Schleifen usw. mit 54,98 g berechnet. Vergrößern Sie nun den Heckflügel, um die Gesamtmasse der Baugruppe Race Car zu erhöhen.

1 Rennwagen-Baugruppe öffnen.

Klicken Sie auf der Menüleisten-Symbolleiste auf Öffnen 🧖

Wechseln Sie zum Ordner der Rennwagen-Baugruppe Race Car.

Öffnen Sie die Baugruppe Race Car.

Die Baugruppe Race Car wird angezeigt.

2 Teil "Race Car Block" öffnen.

Klicken Sie im FeatureManager mit der rechten Maustaste auf Race Car Block.

Klicken Sie auf der Kontext-Symbolleiste auf

Teil öffnen Der FeatureManager für Race Car Block wird eingeblendet.

3 Heckflügel anzeigen.

Klicken Sie auf der Voransichts-Symbolleiste

auf Verdeckte Kanten sichtbar

Klicken Sie auf der Voransichts-Symbolleiste auf die Ansicht **Rechts**

Drücken Sie die Taste **F**, um das Modell an die Größe des Grafikbereichs anzupassen.

Ziehen Sie die **Einfügeleiste** unter Boss-Extrude2 (Aufsatz-Linear austragen2).

Klappen Sie Boss-Extrude2 auf.

Klicken Sie mit der rechten Maustaste auf Sketch9 (Skizze9).

Klicken Sie auf der Kontext-Symbolleiste auf

Skizze bearbeiten 🖉

Vergrößern Sie den Heckflügel.

Klicken Sie auf Ja, um einen Neuaufbau durchzuführen.

Berechnen der neuen Masse

Sie haben die Höhe und Breite des Heckflügels geändert. Vergleichen Sie die ursprüngliche Konstruktion mit der geänderten Konstruktion. Wenden Sie dazu das Werkzeug **Masseneigenschaften** an. Messen Sie die Gesamtmasse der Baugruppe Race Car.

1 Werkzeug "Masseneigenschaften" anwenden.

Klicken Sie auf die Registerkarte **Evaluieren**.

Klicken Sie auf der Evaluieren-Symbolleiste auf Masseneigenschaften . Das Dialogfeld Masseneigenschaften wird eingeblendet.

Klicken Sie auf die Schaltfläche **Optionen**.

Aktivieren Sie die Option Benutzerdefinierte Einstellungen.

Geben Sie 4 für Dezimalstellen ein.

Klicken Sie im Dialogfeld **Optionen Massen-**/

Querschnittseigenschaften auf OK.

Sehen Sie sich die neue Masse der Baugruppe Race Car an. Die neue Masse beträgt etwa 55,31 g im Vergleich zu 54,98 g.

Klicken Sie im Dialogfeld Masseneigenschaften auf Schließen.

Probieren Sie unterschiedliche Konstruktionsänderungen an der Baugruppe Race Car aus. Stellen Sie sicher, dass die endgültige Konfiguration den Wettbewerbsanforderungen entspricht.

🚳 Masseneigenschaften	×
Drucken Kopieren Schließen Optionen Neu bered	:hne
Ausgabe Koordinatensystem: Standard	~
Ausgewählte Elemente:	
Verdeckte Körper/Komponenten mit aufnehmen	
Ausgabekoordinatensystem in Fensterecke anzeigen	
Zugewiesene Masseneigenschaften	
Masseneigenschaften von Race Car (Assembly Configuration - Default)	^
Ausgabekoordinatensystem : Standard	
Masse = 55.3132 Gramm	
Volumen = 202867.9695 Kubik Millimeter	
Oberfläche = 61946.3602 Millimeter^2	
Massenmittelpunkt: (Millimeter) X = 0.0006 Y = 12:1600 Z = 99.0175	Ш
$\begin{array}{l} \mbox{Hauptachsen der Trägheit und Hauptträgheitsmomente:} (\mbox{Gramm} * Quadrat* Bezogen auf den Massenmittelpunkt. \\ Ix = (0.0000, -0.0000, 0.09992) Px = 28704.05; \\ Iy = (1.0000, -0.0000) Py = 208871.95; \\ Iz = (0.0000, 0.09992, 0.0400) Pz = 227481.55; \end{array}$	
Trägheitsmomente: (Gramm * QuadratMilimeter) Bezogen auf den Massenmittelpunkt, ausgerichtet auf das Ausgabekoordinat Lxx = 208871.9598 Lxy = -0.1248 Lxz = 0.9356 Lyx = -0.1248 Lyz = 2.9356 Lyz = -7940.31 Lzx = 0.9356 Lzy = -7940.3133 Lzz = 2.9021.74	
Trägheitsmomente: (Gramm * QuadratMillimeter) Bezogen auf das Ausgabekoordinatensystem,	
	×

Anwenden des Werkzeugs "Messen"

Wenden Sie das Werkzeug **Messen** an, um den geänderten Heckflügel zu messen. Sie haben den Heckflügel des Rennwagenblocks (Race Car Block) geändert.

Bestätigen Sie die geänderten Bemaßungen.

1 Werkzeug "Messen" anwenden.

Klicken Sie auf der Evaluieren-Symbolleiste

auf das Werkzeug **Messen** Dialogfeld Messen – Race Car wird eingeblendet. Erweitern Sie das Dialogfeld bei Bedarf.

Klicken Sie mit der rechten Maustaste in das Auswahlfeld, und wählen Sie **Auswahl** aufheben.

Klicken Sie auf der Voransichts-Symbolleiste auf die Ansicht **Oben [**].

2 Breite des Heckflügels messen. Klicken Sie auf die Vorderkante des Heckflügels.

Klicken Sie auf die **hintere Kante** des Heckflügels. **22 mm** wird angezeigt

Höhe des Heckflügels messen. Klicken Sie mit der rechten Maustaste in das Auswahlfeld, und wählen Sie Auswahl aufheben.

Klicken Sie auf die Ansicht **Rechts** [2].

Klicken Sie auf der Voransichts-Symbolleiste auf **Verdeckte Kanten ausgeblendet** .

Klicken Sie auf die **untere Kante** des Heckflügels.

Klicken Sie auf den **höchsten Punkt** des Heckflügels. Zeigen Sie die Bemaßungen an.

Schließen Sie das Dialogfeld Messen – Race Car.

Klicken Sie auf der Voransichts-Symbolleiste auf Schattiert mit Kanten 🧐.

Klicken Sie auf die Ansicht Isometrisch

SolidWorks

Maschinenbaukonstruktion und Technologie

4 Modell speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf Speichern 🗔.

Klicken Sie in der Menüleiste auf **Fenster**, **Alle schließen**. Alle Modelle werden geschlossen.

Spannungsanalyse der Achse

In diesem Abschnitt werden Sie das in der Rennwagen-Baugruppe Race Car verwendete Teil Axle-A (Achse-A) mithilfe von SolidWorks SimulationXpress™ rasch analysieren. Eine Analyse lässt sich schnell und einfach durchführen. Dazu sind nur sechs Schritte erforderlich:

- 1. Standardeinheiten festlegen und einen Ordner zum Speichern der Analyseergebnisse festlegen.
- 2. Vorrichtungen anwenden.
- 3. Lasten anwenden.
- 4. Material anwenden.
- 5. Analyse ausführen.
- 6. Teil optimieren (optional).
- 7. Ergebnisse anzeigen.

Nach einer ersten, elementaren Analyse des Teils Axle-A und der Überprüfung der Sicherheit dieses Teils werden Sie das Material ändern und die Analyse erneut ausführen.

Konstruktionsanalyse

Nach dem Erstellen einer Konstruktion in SolidWorks ist es empfehlenswert, Folgendes zu prüfen:

- Ist das Teil stabil genug?
- Wie wird es sich verformen?
- Kann ich weniger Material verwenden, ohne die Leistung zu beeinträchtigen?

Ohne Analysewerkzeuge kann nur durch kostenintensive Konstruktionszyklen mit Prototypentests gewährleistet werden, dass die Leistung des Produkts den Kundenerwartungen entspricht. Dank der Konstruktionsanalyse können Konstruktionszyklen nun schneller und kostengünstiger an Computermodellen ausgeführt werden. Das Testen kostspieliger physischer Prototypen entfällt. Selbst wenn die Fertigungskosten nicht so sehr ins Gewicht fallen, bietet die Konstruktionsanalyse bedeutende Vorzüge hinsichtlich der Produktqualität. Ingenieure können Konstruktionsprobleme bereits viel früher erkennen und sparen sich den zeitintensiven Prototypenbau. Die Konstruktionsanalyse erleichtert auch Studien zahlreicher Konstruktionsoptionen und bietet Unterstützung bei der Entwicklung optimierter Konstruktionen.

Spannungsanalyse

Die Spannungsanalyse oder statische Analyse ist die gängigste Konstruktionsanalyse. Sie prognostiziert, wie das Modell sich unter Last verformt. Im Rahmen der Spannungsanalyse werden Verschiebungen, Dehnungen und Spannungen im ganzen Teil basierend auf Materialien, Lagern und Lasten berechnet. Ein Material versagt, wenn die Spannung ein bestimmtes Ausmaß erreicht. Verschiedene Materialien versagen bei verschiedenen Spannungsstärken. In SolidWorks SimulationXpress™ wird die lineare statische Analyse, die auf der Finite-Elemente-Methode (FEM) beruht, zur Berechnung der Spannungen verwendet.

Die linearen statischen Berechnungen stützen sich auf folgende Annahmen zur Berechnung der Spannungen im Teil:

- Annahme der Linearität. Die erhaltene Reaktion ist direkt proportional zu den angewendeten Lasten.
- Annahme der Elastizität. Das Teil nimmt wieder seine ursprüngliche Form an, wenn die Lasten entfernt werden.
- **Statische Annahme**. Alle Lasten werden langsam und schrittweise angewendet, bis sie ihre volle Stärke erreichen.

Benutzeroberfläche

SolidWorks SimulationXpress führt Sie durch sechs Schritte zum Definieren der Materialeigenschaften, Lager und Lasten, zur Analyse und Optimierung des Teils und zur Anzeige der Ergebnisse. Die Benutzeroberfläche von SolidWorks SimulationXpress besteht aus folgenden Komponenten:

Registerkarte **Willkommen**: Hiermit können Sie die Standardeinheiten und einen Ordner zum Speichern der Analyseergebnisse festlegen.

Registerkarte **Einspannungen**: Hiermit können Sie Einspannungen auf die Flächen des Teils anwenden.

Registerkarte **Lasten**: Hiermit können Sie Kräfte und Drücke auf die Flächen des Teils anwenden.

Registerkarte **Material**: Hiermit weisen Sie dem Teil Materialeigenschaften zu. Das Material kann aus der Materialbibliothek zugewiesen werden, oder Sie können die Materialeigenschaften selbst eingeben.

Registerkarte **Ausführen**: Hiermit können Sie die Analyse mit den Standardeinstellungen durchführen oder die Einstellungen ändern.

Registerkarte **Optimieren**: Optimiert eine Modellbemaßung basierend auf einem angegebenen Kriterium.

Registerkarte **Ergebnisse**: Hiermit können Sie die Analyseergebnisse auf folgende Weise anzeigen:

- Sie können kritische Bereiche anzeigen, bei denen der Faktor der Sicherheitsverteilung kleiner als der angegebene Wert ist.
- Sie können die Spannungsverteilung im Modell anzeigen, mit oder ohne Angabe des maximalen und minimalen Spannungswertes.
- Sie können die resultierende Verschiebungsverteilung im Modell anzeigen, mit oder ohne Angabe des maximalen und minimalen Verschiebungswertes.
- Sie können das verformte Modell anzeigen.
- Sie können einen HTML-Bericht erstellen.
- Sie können eDrawings Dateien mit den Analyseergebnissen erstellen.

Schaltfläche **Neu starten**: Klicken Sie auf diese Schaltfläche, um vorhandene Analysedaten und -ergebnisse zu löschen und eine neue Analysesitzung zu beginnen.

Schaltfläche Aktualisieren: Hiermit wird die SolidWorks SimulationXpress Analyse durchgeführt, wenn die Vorrichtungen und Lasten gelöst sind. Wenn sie nicht gelöst sind, wird eine Meldung angezeigt, und Sie müssen ungültige Vorrichtungen oder Lasten bearbeiten. Die Option wird auch angezeigt, wenn Sie nach der Analyse Änderungen an den Materialeigenschaften, Vorrichtungen, Lasten oder der Geometrie vornehmen

Analyse des Teils "Axle-A" (Achse-A)

Wechseln Sie zum heruntergeladenen Ordner Analysis (Analyse), und öffnen Sie das Teil Axle-A in diesem Abschnitt.

Führen Sie eine Spannungsanalyse des Teils Axle-A durch.

Das Teil Axle-A ist ein umbenanntes Teil von Axle (Achse), das in der Rennwagen-Baugruppe Race Car verwendet wird.

Öffnen des Teils "Axle-A"

1 Teil "Axle-A" öffnen. Klicken Sie auf der Menüleisten-Symbolleiste

auf Öffnen 遂

Wählen Sie den **Ordner** aus, in den Sie den Ordner **Analysis** (Analyse) heruntergeladen haben.

Stellen Sie den **Dateityp** auf **Teil** ein.

Doppelklicken Sie auf **Axle-A**. Das Teil Axle-A wird im Grafikbereich eingeblendet.

2 Ansichtsausrichtung ändern.

Falls das Teil nicht in einer isometrischen Ansicht angezeigt wird, klicken Sie auf der

Voransichts-Symbolleiste auf Isometrisch 👰.

3 Material prüfen.

Klicken Sie im FeatureManager mit der rechten Maustaste auf **2024 Alloy** (Legierung 2024).

Klicken Sie auf **Material bearbeiten**. Die physikalischen Materialeigenschaften werden im Dialogfeld **Materialien** angezeigt.

solidworks materials	<u>^</u>	Eigenschaften Erschr	ainungsbild	Schraffur	Benutzerdefiniert	Anwendungsdaten	Favoriten
🗉 🔠 Stahl		Matorialainanachaft					fr
🕣 🔠 Eisen		Materialien in der S	en tandardbibl	iothek könne	n nicht beerheitet u	verden. Sie müssen di	ac Material zuerst in eine
😑 🔢 Aluminiumlegierungen		Anwenderbibliothel	kopieren,	um es bearb	eiten zu können.	rendern, bie masserr de	13 Hideondrizdor 3c in onio
-\$∃ 1060 Legierung	=	6.100	-				
3 ∃ 1060-H12	F	modentyp:	Lineartha				
🚼 1060-H12 Stab (SS)		Einheitent	SI - N/m ²	`2 (Pa)	~		
§Ξ 1060-H14		unescore	Dealerrout				
іі 1060-Н16		Kategorie:	Auminiu	megierunger			
§Ξ 1060-H18		Name:	2024 Leo	lienuna			
3 1060-H18 Stab (SS)							
SE 1060-0 (55)							
1100-H12 Stab (55)		Beschreibungt					
📑 1100-H16 Stab (55)			2				
📜 1100-H26 Stab (SS)		Quelle:					
3∃ 1100-0 Stab (55)		-	18	1876 10 50	Transmission .		
📲 1345 Legierung		Eigenschaft		Wert	Einheiten		
E 1350 Legierung		Elastizitätsmodul		7.3e+010	N/m ²		
201.0-T43 Isolierformguss (SS)		Poissonsche Zahl		0.33	Nicht zutreffend		
201.0-T6 Isolierformguss (SS)		Schubmodul		2.88+010	N/m^2		
= 201.0-T7 Isolierformauss (SS)		Zugtecticket		196106000	Ndm/2		
= 2014 Legierung		Druckfestigkeit in X		100120000	Nim 2 Nim 2		
3 2014-0		Fließgrenze		75829100	N/m ⁴ 2		
3 2014-T4		Warmeausdehnungs	koeffizient	2.3e-005	K		
3 2014-T6		Wärmeleitfähigkeit		140	WW(m-K)		
= 2019 logicy mg		Spezifische Wärme		800	J/(kg-K)		
2010 Legierung		Materialdämpfungsve	erhältnis		Nicht zutreffend		
2024 Legierung							

Anmerkung: Die Materialeigenschaften der Legierung 2024 werden in SimulationXpress verwendet.

4 Zum FeatureManager zurückkehren.

Klicken Sie im Dialogfeld Materialien auf Schließen.

SolidWorks SimulationXpress

Nachdem Sie das Teil in SolidWorks geöffnet haben, können Sie SolidWorks SimulationXpress starten und sofort mit der Analyse beginnen. Im Dialogfeld Optionen wählen Sie das bevorzugte Standard-Einheitensystem aus und legen einen Ordner zum Speichern der Analyseergebnisse fest.

Einheitensysteme

Die folgende Tabelle enthält die von SimulationXpress verwendeten Größen und deren Einheiten in verschiedenen Einheitensystemen:

		SI	Englisch (IPS)	Metrisch
Lasten	Kraft	N (Newton)	lb (Pfund)	kgf
	Druck	N/m ²	psi (lb/in ²)	kgf/cm ²
Materialeig enschaften	EX: Elastizitätsmodul	N/m ²	psi (lb/in ²)	kgf/cm ²
	NUXY: Poissonsche Zahl	dimensionslos	dimensionslos	dimensionslos
	SIGYLD: Fließgrenze	N/m ²	psi (lb/in ²)	kgf/cm ²
	DENS: Massendichte	kg/m ³	lb/in ³	kg/cm ³
Ergebnisse	Äquivalente Spannung	N/m ²	psi (lb/in ²)	kgf/cm ²

Tabelle 1: In SimulationXpress verwendete Einheitensysteme

Starten von SimulationXpress und Festlegen der Analyseoptionen

1 SolidWorks SimulationXpress ausführen.

Klicken Sie in der Menüleiste auf **Extras**, **SimulationXpress**.

Die SolidWorks SimulationXpress Anwendung wird gestartet, und die Registerkarte **Willkommen** ist ausgewählt.

- Tipp: Sie können SimulationXpress schnell ausführen, indem Sie im BefehlsManager auf der Registerkarte Evaluieren auf SimulationXpress Analyse-Assistent klicken.
 - 2 Systemeinheiten festlegen. Klicken Sie auf dem Bildschirm
 Willkommen auf die Schaltfläche Optionen.

Stellen Sie die Option **System** der Einheiten auf **SI**, (MMGS) ein.

Geben Sie im Feld **Ablageort für Ergebnisse** den Pfad des Ordners Analysis an.

Klicken Sie auf OK.

Klicken Sie auf Next (Weiter).

SimulationXpress Opt	jonen 🔰
Einheitensystem:	
Ablageort für :	c:\docume~1\admin1\locals~1\temp
Beschriftung für Mindes	st- und Höchstwert in den Ergebnisdarstellungen anzeiger
	OK Abbrechen
	SolidWorks SimulationXpress
	~ [
	 Milkommen bei Solid/Vorks SimulationXpress. SimulationXpress. SimulationXpress. SimulationXpress. SimulationXpress. SimulationXpress. Noreraga, we schem Teilung Doteraga, we schem Teilungen Belastung vorhalten wird sowie bei de Feststellung potentieller Probleme. In SimulationXpress wenden Sie Last und Einspannupen auf ein Teil and Teilung zeigen des Material fest, analysieren da Teilung zeigen de Ergenhöse an. All diese Informationen sind Teil der Simulation Studie. Anmerkung: Meist ist ein umfassender Ansahme einer Konstruktion nötig. Hicken Sie hier, un de losteniose Critine- Schutanz zu den Grundaen von Solidvide Sinulation hozauten. Optionen

Anwenden einer Vorrichtung

1 Vorrichtung anwenden.

Die Registerkarte **Vorrichtungen** wird aktiviert. Im Abschnitt **Vorrichtungen** werden Informationen dazu erfasst, wo das Teil Axle-A fixiert ist. Sie können mehrere Vorrichtungssätze festlegen. Jeder Satz kann dabei mehrere Flächen umfassen.

Klicken Sie auf die Schaltfläche Vorrichtung hinzufügen. Der PropertyManager Vorrichtung wird eingeblendet.

2 Fixierte Flächen auswählen. Klicken Sie auf die rechte Fläche des Teils Axle-A.

> Klicken Sie auf die **linke Fläche** des Teils Axle-A, wie in der Abbildung dargestellt.

> Face <1> (Fläche 1) und Face<2> (Fläche 2) werden im Feld Fixierte Geometrie eingeblendet.

> Klicken Sie im PropertyManager

Vorrichtung auf **OK** Zeigen Sie den aktualisierten Studienbaum an.

Anmerkung: Klicken Sie auf Vorrichtung hinzufügen, um einen neuen Vorrichtungssatz hinzuzufügen.

Anwenden einer Last

Über die Registerkarte **Lasten** können Sie die auf das Teil wirkenden Lasten festlegen. Bei einer Last kann es sich entweder um eine Kraft oder um einen Druck handeln.

Sie können mehrere Lasten auf eine oder mehrere Flächen anwenden. Die Richtung einer Kraft kann in Bezug auf Ebenen oder normal auf ausgewählte Flächen angegeben werden. Druck wird immer normal auf ausgewählte Flächen angewendet.

SolidWorks

Maschinenbaukonstruktion und Technologie

Anwenden einer Last

- Last anwenden. Klicken Sie auf Next (Weiter). Erfassen Sie Informationen zu den auf das Teil Axle-A wirkenden Lasten. Sie können mehrere Sätze von Kräften oder Drücken angeben. Jeder Satz kann mehrere Flächen umfassen.
- Lastart auswählen. Klicken Sie auf Kraft hinzufügen. Der PropertyManager Kraft wird eingeblendet.
- Fläche auswählen, auf die die Kraft ausgeübt wird.
 Klicken Sie auf die zylindrische Fläche des Teils Axle-A.

Face <1> wird angezeigt.

Anmerkung: Weitere flexible Einspannungstypen sind in SolidWorks Simulation Professional verfügbar. Einspannung hinzufügen Bestehende Einspannung bearbeiten	1 Einspannungen 2 Lasten 3 Material 4 Ausführen 5 Ergebnisse 6 Optimieren
Zurück Starten	Zur Simulation der Belastung des Teils, wenden Sie Kräfte, Drücke oder beides an Beispiele Warnung: Von diesen Belastungen wird angenommen, dass Sie gleichförmig und konstant sind. <u>Was bedeutet das?</u> Kraft hinzufügen Druck hinzufügen
	Zurück 🗾 Neu starten

Richtung und Größe der Kraft angeben.
 Klicken Sie auf das Feld

Ausgewählte Richtung.

Klicken Sie im aufschwingenden FeatureManager auf **Top Plane** (Ebene oben).

Aktivieren Sie das Kontrollkästchen **Richtung umkehren**. Die Pfeile für die Kraft zeigen nach unten.

5 Kraft anwenden.

Geben Sie 1 N ein.

Klicken Sie im PropertyManager Kraft auf

OK *I*. Zeigen Sie den aktualisierten Studienbaum an.

🗞 👔 😫 🔶 🤒 Kraft	Axle-A (Default <<
🖌 🗙 🛥	3 = 2024 Alloy
Гур	Pront Plane
Kraft	🔉 🚽 👬 Origin
Fläche<1>	Boss-Extrude1
Normal	
Top Plane	l i
Pro Element Gesamt	
Einheiten	*
SI 🖌	
Kraft	*
Richtung umkehren	

Externe Lasten

Kraft-1 (:Pro Element: -1 N:)

SolidWorks

Maschinenbaukonstruktion und Technologie

Zuweisen von Material

Die Reaktion des Teils hängt vom Herstellungsmaterial ab. Die elastischen Eigenschaften des Teilmaterials müssen angegeben werden. Sie können ein Material aus der SolidWorks Materialbibliothek entnehmen oder selbst Materialeigenschaften definieren. SimulationXpress verwendet die folgenden Materialeigenschaften zur Durchführung der Spannungsanalyse.

Elastizitätsmodul (EX). Für ein linear elastisches Material ist das Elastizitätsmodul die Spannung, die die Dehnung des Materials um eine Einheit verursacht. Anders ausgedrückt: die Spannung dividiert durch die zugehörige Dehnung. Das Elastizitätsmodul wurde von Young eingeführt und wird daher auch als Youngsches Modul bezeichnet.

Poissonsche Zahl (NUXY). Die Materialdehnung in Längsrichtung wird von einem Schrumpfen in

in Längsrichtung wird von einem Schrumpfen in den Querrichtungen begleitet. Wenn z. B. auf einen Körper in der X-Richtung eine Zugspannung angewendet wird, ist die Poissonsche Zahl als Verhältnis der lateralen Dehnung in der Y-Richtung dividiert durch die Dehnung in Längsrichtung (X-Richtung) definiert. Poissonsche Zahlen sind dimensionslose Größen. Wenn sie nicht definiert sind, nimmt das Programm den Standardwert 0 an.

Fließgrenze (SIGYLD). SimulationXpress verwendet diese Materialeigenschaft zur Berechnung der Sicherheitsfaktor-Verteilung. In SimulationXpress wird davon ausgegangen, dass das Material zu fließen beginnt, wenn die äquivalente Spannung (von Mises) diesen Wert erreicht.

Massendichte (DENS). Die Dichte ist definiert als Masse pro Volumeneinheit. Die Einheit der Dichte lautet lb/Zoll³ im englischen System und kg/m³ im SI-System. In SimulationXpress wird die Massendichte verwendet, um Masseneigenschaften des Teils in die Berichtdatei aufzunehmen.

Zuweisen von Material

1 Weist dem Teil ein Material zu.

Klicken Sie auf **Material auswählen**. Das Dialogfeld Material wird eingeblendet.

Wählen Sie 2024 Alloy (Legierung 2024).

Klicken Sie auf Anwenden.

Klicken Sie auf **Schließen**. Zeigen Sie den aktualisierten Studienbaum an. Ein grünes Häkchen zeigt an, dass das Material dem Teil zugewiesen wurde.

2 Analyse ausführen.

Klicken Sie auf **Next** (Weiter). Die Registerkarte "Ausführen" wird eingeblendet.

al							
🔢 Aluminiumlegierungen	~	Eigenschaften F	Favoriten				
E 1060 Legierung		55.95 (50°)	A CONTRACT				
1060-H12		Materialeigenso	chaften des Chandes des des des fil	Cithal I. Barry		ويستح سياسي الم	
1060-H12 Stab (SS)		Materialien in c Anwenderhihli	Jer Stanuaropipii othek konieren.	othek konne um es hearh	eiten zu können.	et werden, bie mu	Ssen das Materiai zuerst in eine
1060-H14		C UE		111 34 G. 199	01001.00	8	
1060-H16		Modelltyp:	Linear Ela	istisch Tsotro	M do		
1060-H18		Einheitent	SI - N/m	`2 (Pa)	~		
= 1060-H18 Stab (55)				- v,			
3= 1060-0 (SS)		Kategorie:	Aluminiur	nlegierungen	n .		
1100-H12 Stab (SS)		NOmber	2024 Ler	aloga atom			
3= 1100-H16 Stab (55)		Ndipe.	LOGTIN	itel unita			
3= 1100-H26 Stab (55)							
3= 1100-0 Stab (SS)		Bachrahim		_			-
3 1345 Lenier ing		035011Biolety	M				
S= 1350 Lenierung		Quellet					
3 201.0-T43 Isolierformauss (55)			1				
3= 201.0-T6 Isolierformauss (SS)		Eigenschaft		Wert	Einheiten		
201.0-T7 Isolierformouss (55)		Elestizitätsmody	A	7.3e+010	N/m ^a 2		
3 = 2014 Legierung		Poissonsche Ze	abi	0.33	Nicht zutreffen	d	
3= 2014-0		Schubmodul		2.8e+010	N/m*2		
3 2011-74		Dichte		2800	kg/m^3		
3 = 2014-16		Zugtestigkeit	12	186126000	N/m ² 2		
3 201110 3 2018 Legierung		Flaßgranze	nt A	75829100	Natr 2 NépA2		
		Warmeausdehr	ungskoeffizient	2.36-005	M		
= 2024 Lagian An (54)		Wärmeleitfähick	eit	140	W/(m·K)		
S = 2024 Ceglerung (Ling)		Spezifische Wä	irme	800	J/(kg·K)		
2024-0 - 2024 T2		Materialdämpfur	ngsverhältnis		Nicht zutreffen	đ	
2024-13				_			
3 2024-1361		-		-	-		
2024-14	×	Anwe	and Schlie	Ben Spr	aichem Konfie	guration	Hilfe

🧲 Zurück

Neu

starten

5

SimulationXpress erfordert die Vorraussage des Teilmaterials,

Ausführen der Analyse

Über die Registerkarte Analysieren führen Sie die Analyse aus. SimulationXpress bereitet das Modell für die Analyse vor und berechnet die Verschiebungen, Dehnungen und Spannungen.

Die erste Phase der Analyse ist die Vernetzung. Bei der Vernetzung wird die Geometrie im Grunde in kleine, einfach geformte Teile unterteilt, die als finite Elemente bezeichnet werden.

In der Konstruktionsanalyse werden finite Elemente verwendet, um die Reaktion des

Modells auf angewendete Lasten und Lager zu berechnen. SimulationXpress berechnet eine globale Elementgröße für das Modell, und zwar basierend auf dem Volumen, der Oberfläche und anderen geometrischen Details. Sie können in SimulationXpress die Standardelementgröße festlegen oder eine andere Elementgröße verwenden.

Nach der erfolgreichen Vernetzung des Modells beginnt die zweite Phase automatisch. SimulationXpress erstellt die Gleichungen, die das Verhalten der einzelnen Elemente regeln; dabei werden auch die Verbindungen der Elemente untereinander berücksichtigt. Diese Gleichungen setzen die Verschiebungen zu bekannten Materialeigenschaften, Lagern und Lasten in Beziehung. Anschließend werden die Gleichungen in einem großen Satz simultaner algebraischer Gleichungen

organisiert. Der Solver findet die Verschiebungen in die X-, Y- und Z-Richtung an den einzelnen Knoten.

Mit Hilfe der Verschiebungen werden die Dehnungen in den verschiedenen Richtungen berechnet. Abschließend werden mit Hilfe von mathematischen Ausdrücken die Spannungen berechnet.

SolidWorks

Maschinenbaukonstruktion und Technologie

Ausführen der Analyse

1 Standardeinstellungen verwenden.

Klicken Sie auf **Simulation starten**. Sehen Sie sich die Ergebnisse und den aktualisierten Studienbaum an.

Die Analyse beginnt. Nach Abschluss der Analyse wird ein Häkchen auf der Registerkarte **Ausführen** und der Registerkarte **Ergebnisse** angezeigt. Sehen Sie die Bewegungssimulation des Teils im Grafikbereich an.

SimulationXpress Study	
Lösung:	
Speichernutzung:17,528K	
Verstrichene Zeit:1s	
🖂 Beim Ausführen der Analyse immer So	ver-Status
Pause Abbrechen (Mehr>>

2 Bewegungssimulation beenden. Klicken Sie auf Animation stoppen.

Betrachten der Ergebnisse

Das Betrachten der Ergebnisse ist ein entscheidender Schritt im Analyseprozess. In diesem Schritt bewerten Sie, inwieweit Ihre Konstruktion den angegebenen Arbeitsbedingungen standhält.

In diesem Stadium werden Sie in die Lage versetzt, wichtige Entscheidungen darüber zu fällen, ob Sie die Konstruktion in der jetzigen Form übernehmen und mit der Prototyperstellung fortfahren, weitere Verbesserungen an der Konstruktion vornehmen oder weitere Last- und Vorrichtungssätze darauf anwenden.

SimulationXpress verwendet das maximale von-Mises-Spannungskriterium zur Berechnung der Faktoren der Sicherheitsverteilung. Dieses Kriterium besagt, dass ein zähes Material zu fließen beginnt, wenn die äquivalente Spannung (von-Mises-Spannung) die Fließgrenze des Materials erreicht hat. Die Fließgrenze (SIGYLD) ist als Materialeigenschaft definiert. SimulationXpress berechnet den Faktor der Sicherheitsverteilung an der entsprechenden Stelle, indem die Fließgrenze durch die äquivalente Spannung an dieser Stelle dividiert wird.

Bedeutung der Werte beim Faktor der Sicherheitsverteilung:

- Ein Faktor der Sicherheitsverteilung unter 1,0 an einer Stelle gibt an, dass das Material an dieser Stelle nachgegeben hat und dass die Konstruktion nicht sicher ist.
- Ein Faktor der Sicherheitsverteilung von 1,0 an einer Stelle gibt an, dass das Material an dieser Stelle zu fließen beginnt.

- Ein Faktor der Sicherheitsverteilung größer als 1,0 an einer Stelle gibt an, dass das Material an dieser Stelle nicht nachgegeben hat.
- Das Material beginnt an einer Stelle zu fließen, wenn Sie neue Lasten gleich der vorliegenden Lasten multipliziert mit dem resultierenden Faktor der Sicherheitsverteilung anwenden.

Anzeigen der Ergebnisse

1 Ergebnisse anzeigen. Doppelklicken Sie auf den Ordner Spannung (vonMises-) Ergebnisse Zeigen Sie die Ergebnisse an.

> Doppelklicken Sie auf den Ordner Verschiebung (-Resultierende Verschiebung-) Ergebnisse. Zeigen Sie die Ergebnisse an.

Doppelklicken Sie auf den Ordner Verformung (-Verschiebung-) Ergebnisse. Zeigen Sie die Ergebnisse an.

Doppelklicken Sie auf den Ordner Factor of Safety

(Sicherheitsfaktor) Ergebnisse. Sehen Sie sich die Ergebnisse im Diagrammbereich an. Das Teil Axle-A wird in Blau angezeigt. Bereiche mit einem Sicherheitsfaktor größer 1 werden in Blau dargestellt.

Klicken Sie auf Ja, fortsetzen.

Modellname: Axle-A Studienname: SimulationXpress Study Darstellungsart: Statisch knotenspannung Stress Verformungsfaktor: 4367.49

Der Faktor der Sicherheitsverteilung des Teils Axle-A beträgt etwa 54,14. Dieser Wert deutet darauf hin, dass die aktuelle Konstruktion sicher oder überkonstruiert ist. Anmerkung: Ihr Wert weicht möglicherweise etwas ab.

2 Sicherheitsfaktor ändern.

Geben Sie **10** in das Feld Show where factor of safety (FOS) is below ein.

Klicken Sie auf Show where factor of safety (FOS) is below.

Folgende Darstellung wird angezeigt. Bereiche in Blau haben einen Faktor der Sicherheitsverteilung von mehr als 10 (überkonstruierte Bereiche).

Bereiche in Rot haben einen Faktor der Sicherheitsverteilung von weniger als 10. Alle Bereiche werden in Blau angezeigt.

Klicken Sie auf Fertig mit Durchsicht der Ergebnisse.

Ausführen eines Berichts

SolidWorks SimulationXpress ermöglicht das Speichern eines Berichts über die Ergebnisse oder das Erstellen einer eDrawing-Datei. Dies sorgt für eine gute Dokumentation für die zukünftige Arbeit an diesem oder ähnlichen Projekten.

1 Bericht noch nicht ausführen oder erstellen. Klicken Sie auf Weiter.

Anmerkung: Erstellen Sie zu Übungszwecken einen Bericht.

Optimierung des Modells

SolidWorks SimulationXpress versucht, den optimalen Wert für eine Modellbemaßung zu finden, und zwar unter Einhaltung eines bestimmten Kriteriums:

- Sicherheitsfaktor
- Maximale Spannung
- Maximale Verschiebung

Sie können den gewünschten Sicherheitsfaktor eingeben oder den Sicherheitsfaktor basierend auf dem Mindest- und Höchstmaß von SimulationXpress berechnen lassen.

- Variablen		
Hier klicke	ı zum HinzufügenVariab. 🖌	
7 wanashedingun	ren -	
Liev blicks	Tum HinzufügenZwang	
Ther knoke	Lain LinitawayenZwang 🗸	
_ mer hicke	Lann Linizanagen Lweng 🖌	
Ziele	Lam ImLuagentweng 🗸	
Ziele Masse	Minimize	
E Ziele Masse	Minimize	
Ziele Masse	Minimize	

Optimierung des Modells

1 Modell optimieren.

Übernehmen Sie den Standardwert. Klicken Sie auf **Next** (Weiter).

Klicken Sie auf die Durchmesserbemaßung **3 mm**, wie im Grafikbereich dargestellt.

Klicken Sie im Dialogfeld Add Parameters (Parameter hinzufügen) auf **OK**.

Übernehmen Sie den Bemaßungsbereich: Min: 1,5 mm - Max: 4,5 mm. Klicken Sie auf **Next** (Weiter).

Bearbeiten Sie zu diesem Zeitpunkt noch keine Bemaßungen. Klicken Sie auf **Next** (Weiter).

		×
3	1 Einspannungen	v
	2 Lasten	~
5	3 Material	V
	4 Ausführen	\checkmark
2	5 Ergebnisse	
	6 Optimieren	
×	Konstruktion optimieren SimulationXpress kann, basierend auf den Simulationsergebnissen, optimale Bemaßung für di meisten Features in Ihren SolidWorks Modell ermitte Soli Ihr Modell optimiert w © Ja © Nein	die ie In. erden?
		Neu

	Parameter hinzu	fügen	×
	Wählen Sie eine Mo	odellbemaßung für die Optimierung	aus.
	Modellbemaßung:	D1@Sketch1@Axle-A.Part	
-	ОК	Abbrechen Hilfe]
	Ð	Bemaßungbereich bearbei	ten
	Ð	Weiter	
	<	Zurück ව g	Neu starten
🔰 Zwangsbedingu	ing bearbeiten	Bemaßungbereich bearbi	eiten
		Differ the second secon	
Jurück	Neu starten	C Zurück	Neu starten
Lektion 5: Analyse

SolidWorks Maschinenbaukonstruktion und Technologie

Geben Sie eine Zwangsbedingung für die Optimierungsstudie ein. Geben Sie den Mindestsicherheitsfaktor an. Klicken Sie auf **Specify the constraint** (Zwangsbedingung festlegen).

Wählen Sie **Factor of Safety** (Sicherheitsfaktor) aus dem Dropdownmenü "Constraint" (Zwangsbedingung). Zeigen Sie die Ergebnisse an.

Klicken Sie auf **Next** (Weiter).

Geben Sie **10** in der Spalte "Min:" wie gezeigt ein.

Klicken Sie auf **Next** (Weiter).

Klicken Sie auf **Run the optimization** (Optimierung ausführen).

Optimierung	ausführe	<u>in</u>
Weiter		
		Neu
	2	starten

Zeigen Sie die Ergebnisse an.

- Anmerkung: Zu Übungszwecken können Sie auf "Run" (Ausführen) klicken und die Analyse mit den neuen Werten erneut ausführen.
 - 2 Alle Modelle schließen. Klicken Sie in der Menüleiste auf Fenster, Alle schließen. Damit ist dieser Abschnitt abgeschlossen.

Variable Ansicht	Ergebr	isansicht			
					_
		Initia		Optimal	
D1Sketch1		3mm		1.810089mm	
Faktor der Sicherheits	sverteilung	54.149259		11.677001	
Masse		3.53429e-00)7 kg	1.28665e-007 kg	

SolidWorks Flow Simulation

In dieser Lektion analysieren Sie mit SolidWorks Flow Simulation die Aerodynamik der anfänglichen Baugruppe Race Car Block und der endgültigen Baugruppe Race Car. Betrachten Sie SolidWorks Flow Simulation in diesem Abschnitt als einen virtuellen Windkanal.

Anmerkung: Die anfängliche Baugruppenkonfiguration Race Car Block wurde aus Zeitersparnisgründen bereits erstellt; sie befindet sich im Ordner Flow Simulation, den Sie heruntergeladen haben.

Was ist SolidWorks Flow Simulation?

SolidWorks Flow Simulation ist das einzige vollständig in SolidWorks eingebettete Werkzeug zur Fließverhaltensanalyse für Konstrukteure. Mit dieser Software können Sie das Volumenkörpermodell direkt analysieren. Mit dem Assistenten können Sie außerdem mühelos Einheiten, Fluidtyp, Fluidsubstanzen und mehr einrichten.

Die Analyse umfasst mehrere Schritte:

- Eine Konstruktion in SolidWorks erstellen. Mit SolidWorks Flow Simulation können Teile, Baugruppen, Unterbaugruppen und Mehrkörper analysiert werden.
- Eine Projektdatei in SolidWorks Flow Simulation erstellen. SolidWorks Flow Simulation Projekte enthalten alle Einstellungen und Resultate einer Analyse und jedes Projekt, das mit einer SolidWorks Konfiguration verknüpft ist.
- 3. Analyse ausführen. Dieser Vorgang wird manchmal auch als Lösen bezeichnet.
- 4. Die SolidWorks Flow Simulation Ergebnisse anzeigen. Dazu gehören: Ergebnisdarstellungen:
 - Vektoren, Konturen und Isolinien
 - Schnittdarstellungen, Oberfläche, Durchflussbahnen und ISO-Oberflächen Verarbeitete Ergebnisse:
 - XY-Darstellungen (Microsoft Excel)
 - Ziele (Microsoft Excel)
 - Oberflächenparameter
 - Punktparameter
 - Berichte (Microsoft Word)
 - Referenzfluidtemperaturen

Fließverhaltensanalyse

Mit einer Fließverhaltensanalyse wird das Verhalten von Flüssigkeiten wie Wasser oder Öl oder von Gasen wie Wasserstoff, Sauerstoff oder Luft dynamisch untersucht. Bei der Simulation einer Wettervorhersage, von Tsunami-Daten oder des Autoverkehrs spielt die Fließverhaltensanalyse eine Rolle.

Eine Fließverhaltensanalyse dient der Energieeinsparung und unterstützt die Wärmeübertragung.

Energieeinsparung: Das Gesamtspannungslast eines Motors kann durch Analysieren seiner Struktur und seines Gewichts verringert werden, während eine Fließverhaltensanalyse Daten zur Verbrennungseffizienz liefern kann, mit denen der Wirkungsgrad erhöht werden kann.

Wärmeübertragung: Bezieht sich auf den Energieaustausch in Form von Wärme. In einem Kernreaktor zum Beispiel wird durch den radioaktiven Zerfall nicht direkt elektrische Energie erzeugt. Die an das Wasser abgegebene Wärme erzeugt Dampf, der die Turbinen antreibt, die wiederum elektrischen Strom erzeugen.

Eine Fließverhaltensanalyse wird in vielen Bereichen der produzierenden Industrie verwendet:

- Aerodynamische Konstruktion und Maschinen Ventilatoren und stromerzeugende Windräder
- Kühlen und Heizen Vorhersage des Umfangs der Wärmezufuhr bez. Wärmeabgabe
- Mit Fluiden arbeitende Maschinen Pumpen, Kompressoren und Ventile
- Elektrische Geräte Computer und exothermische Messungen von elektrischen Präzisionsgeräten
- Transportmaschinen
 Kraftfahrzeuge, Schiffe und Flugzeuge

Was bezweckt eine Konstruktionsanalyse?

Nach dem Erstellen einer Konstruktion in SolidWorks ist es empfehlenswert, Folgendes zu prüfen:

- Wie schnell bewegt sich das Teil?
- Wie wird es vom Luftwiderstand beeinflusst?
- Kann ich weniger Material verwenden, ohne die Leistung zu beeinträchtigen?

Ohne Analysewerkzeuge kann nur durch kostenintensive Konstruktionszyklen mit Prototypentests gewährleistet werden, dass die Leistung des Produkts den Kundenerwartungen entspricht. Dank der Konstruktionsanalyse können Konstruktionszyklen nun schneller und kostengünstiger an Computermodellen ausgeführt werden. Selbst wenn die Fertigungskosten nicht so sehr ins Gewicht fallen, bietet die Konstruktionsanalyse bedeutende Vorzüge hinsichtlich der Produktqualität. Ingenieure können Konstruktionsprobleme bereits viel früher erkennen und sparen sich den zeitintensiven Prototypenbau. Die Konstruktionsanalyse erleichtert auch die Untersuchung zahlreicher Konstruktionsoptionen und bietet Unterstützung bei der Entwicklung optimierter Konstruktionen. Eine schnelle und preiswerte Analyse führt oft zu nicht unmittelbaren Lösungen, und Ingenieure profitieren davon, indem sie das Produktverhalten besser verstehen können.

Vor dem Einsatz von SolidWorks Simulation Flow auszuführende Schritte

Stellen Sie sicher, dass die SolidWorks Flow Simulation 2011 Software installiert ist.

Klicken Sie in der Menüleiste auf **Extras**, **Zusatzanwendungen**.

Aktivieren Sie das Kontrollkästchen SolidWorks Flow Simulation 2011.

Klicken Sie im Dialogfeld **Zusatzanwendungen** auf **OK**.

- Anmerkung: Die Registerkarte Flow Simulation wird im BefehlsManager mit einem aktiven Dokument angezeigt.
- Tipp:Wählen Sie im BefehlsManager FlowSimulation Werkzeuge aus.

Analysieren des anfänglichen Rennwagenblocks

 Rennwagen-Baugruppe "Race Car" im Ordner "Flow Simulation" öffnen. Klicken Sie auf der Menüleisten-Symbolleiste auf Öffnen 2.

Wechseln Sie zum Ordner Flow Simulation.

2 Auf "Race Car" doppelklicken. Die Baugruppenkonfiguration Race Car (Initial Block) wird im Grafikbereich angezeigt. Die Baugruppenkonfiguration Race Car (Initial Block) wurde bereits für Sie erstellt, um Zeit zu sparen.

3 Sensors

Annotations
Year of the second sec

Erstellen eines Fließverhaltensprojekts

Klicken Sie im BefehlsManager auf die Registerkarte Flow Simulation.
 Klicken Sie im BefehlsManager "Flow

Simulation" auf **Wizard** (Assistent). Das Dialogfeld **Wizard** (Assistent) wird eingeblendet. Sehen Sie sich die Optionen an.

4 **Projektnamen konfigurieren.** Klicken Sie auf die Option **Create new** (Neu erstellen).

Übernehmen Sie den Configuration name (Konfigurationsnamen): Initial Block (1) (Anfänglicher Block).

Wizard - Project Configuration	Configuration	? X «
	Create new Use current Configuration name: Unitial Block (1) Current configuration: Initial Block	
Input Data Computational Computational Component Co Fail Solid Materials Solid Materials Fail Solid Materi	I Domai ontrol inis ditions stances lations	
	K Back Next >	Cancel Help

Lektion 5: Analyse

Anmerkung: Alle erforderlichen Analysedaten für dieses Projekt werden in dieser SolidWorks

Modellkonfiguration gespeichert.

5 Einheitensystem festlegen. Klicken Sie im Feld Unit system (Einheitensystem) auf Sl(m-kg-s).

> Klicken Sie in das Feld Velocity/Units (Geschwindigkeit/Einheiten).

Wählen Sie **Mile/hour** (Meile/ Stunde) aus.

Zeigen Sie (Bildlauf nach unten) die Option **Loads&Motion** (Lasten & Bewegung) an.

Klappen Sie den Ordner Loads&Motion auf.

Klicken Sie in das Feld **Force**/**Units** (Kraft/Einheiten).

Wählen Sie **Gram force** (Pond) aus.

Klicken Sie auf **Next>** (Weiter).

Pond (Gram-force)

Pond ist eine Einheit der Kraft und ist etwa so groß wie die Gewichtskraft einer Masse von 1 g auf der Erde. Die Schwerkraftbeschleunigung g hängt aber von der geografischen Breite, Länge und der Höhe über dem Meeresspiegel ab. Die genaue Definition lautet: 1 Pond ist die Gewichtskraft einer Masse von 1 g an einer Stelle, an der die

System	Path		Comm	ient	
CGS (cm-g-s) FPS (ft-lb-s) IPS (in-lb-s) NMM (mm-g-s)	Pre-Dr Pre-Dr Pre-Dr Pre-Dr	efined efined efined	CGS (d FPS (fi IPS (in NMM)	cm-g-s) t-lb-s) (-lb-s) (mm-g-s)	
SI (m-ka-s)	Pre-Di	efined	SI (m-k	(nin g s) (n-s)	
USA	Pre-D	efined	USA		
Create new	Name:	SI (m	-kg-s) (modified)		
Paramet	er	Units	Decimal Places	1.0 Unit SI =	^
Physical time		\$	1	1	
Filysical unic			1.0	12	
Geometrical Chara	cteristic				
Geometrical Chara Loads&Motion	cteristic	Ū			
Geometrical Chara Loads&Motion Acceleration	cteristic	m/s^2	1	1	1
Geometrical Charae Loads&Motion Acceleration Force	cteristic	m/s^2	1	1 101.971621	
Geometrical Charae Loads&Motion Acceleration Force Mass flow rate	cteristic	m/s^2 p	1	1 101.971621 1	
Geometrical Charae Geometrical Charae Loads&Motion Acceleration Force Mass flow rate Mach number	oteristic	m/s^2 p v kg/s	1 3 2	1 101.971621 1 1	
Privstal unite Geometrical Charae Loads&Motion Acceleration Force Mass flow rate Mach number Angular velocity	cteristic	m/s^2 p v kg/s rad/s	1	1 101.971621 1 1	
Geometrical Charae Geometrical Charae Loads&Motion Acceleration Force Mass flow rate Mach number Angular velocity Volume flow rate	cteristic e	m/s^2 p kg/s rad/s m^3/s	1 3 2 3 4	1 101.971621 1 1 1	

Beschleunigung aufgrund der Schwerkraft 9,80665 m pro Sekunde im Quadrat beträgt.

6 Analyseart und physikalische Merkmale festlegen. Klicken Sie unter Analysis type (Analyseart) auf External (Extern).

Aktivieren Sie das Kontrollkästchen **Exclude cavities without flow conditions** (Vertiefungen ohne Strömungsbedingungen ausschließen).

Aktivieren Sie das Kontrollkästchen **Exclude internal space** (Internen Raum ausschließen).

Wählen Sie Z als Reference axis (Referenzachse) aus.

Anmerkung: Die Referenzachse wird gewählt, so dass ein Winkelgeschwindigkeitsvektor auf die Referenzachse ausgerichtet werden kann.

Wizard - Analysis Type	Analusis tune	Consider closed cavities	
	O Internal	Exclude cavities without flow conditions Exclude internal space	
	Physical Features Heat conduction in so Radiation Time-dependent Gravity	Value	
- 0-	Rotation		
His			
	Reference axis:	Dependen Next > Cancel Helt	ay

Anmerkung: Bei einer internen Analyse werden geschlossene Flusspfade, bei einer externen Analyse offene Flusspfade untersucht. Eine interne Analyse wird zum Beispiel für einen Auspuffkrümmer bei einem Kraftfahrzeugmotor verwendet.

7 Standardfluid festlegen.

Klappen Sie den Ordner Gases (Gase) auf.

Klicken Sie auf Air (Luft).

Klicken Sie auf die Schaltfläche Add (Hinzufügen).

Tipp: Sie können auch auf **Air** doppelklicken oder den Eintrag aus der einen Liste in die andere ziehen.

	Fluids	Path	~	New
	- Gases			
	Acetone	Pre-Defined		
	Ammonia	Pre-Defined		
	Argon	Pre-Defined		
	Butane	Pre-Defined		
	Carbon dioxide	Pre-Defined		
	Chlorine	Pre-Defined		
	Ethane	Pre-Defined		
	Ethanol	Pre-Defined		
	Ethylene	Pre-Defined		
	Fluorine	Pre-Defined	~	L Ladd
	Project Fluids	Default Fluid		Remove
	Default fluid type	Gases / Real Gases / Stea	m	
	Air (Gases)	2		
ASS.	Water (Liquids)			
Caller Street	Flow Characteristic	Makua	_	
	Flow type	Leminer and Turbulant		
1	Humidity			

Anmerkung: Zu SolidWorks Flow Simulation gehört eine Datenbankbibliothek mit verschiedenen Flüssigkeiten und Gasen, die sogenannte technische Datenbank. Mit dieser Datenbank können Sie eigene Materialien erstellen.

SolidWorks Flow Simulation kann bei einer Analyse entweder inkompressible Flüssigkeiten oder kompressible Gase analysieren, aber nicht beides gleichzeitig. Sie können außerdem weitere physikalische Merkmale festlegen, die vom Programm berücksichtigt werden müssen.

Lektion 5: Analyse

SolidWorks

Maschinenbaukonstruktion und Technologie

8 Wandbedingungen festlegen.

Übernehmen Sie die Standardeinstellungen: Adiabatic wall (Adiabatische Wand) und Roughness = 0 micrometer (Rauheit = 0 Mikrometer).

Klicken Sie auf **Next>** (Weiter).

9 Anfangs- und Umgebungsbedingungen festlegen.

Doppelklicken Sie in das Wertefeld für **Velocity in Z direction** (Geschwindigkeit in Z-Richtung).

Geben Sie -**55 mile/h** (Meile/h) ein. Das sind etwa -24,58 m/s.

Anmerkung: Das Minuszeichen ist wichtig! Es zeigt an, dass die Luft zum Fahrzeug hin strömt.

> In Wirklichkeit bewegt sich das Fahrzeug durch ruhende Luft. In einem Windkanal ist das Fahrzeug in Ruhe und die Luft bewegt sich. Betrachten Sie dieses Beispiel einer Fließverhaltenssimulation als virtuellen Windkanal. Das Fahrzeug ist in Ruhe und die Luft bewegt sich.

	Value
Parameter Definition	User Defined
🗐 Thermodynamic Parameters	
Parameters:	Pressure, temperature
Pressure	101325 Pa
Temperature	293.2 K
🗦 Velocity Parameters	
Parameter:	Velocity
Velocity in X direction	0 m/s
Velocity in Y direction	0 m/s
Velocity in Z direction	-55mile/h
🗄 Turbulence Parameters	N

10 Ergebnisse und Geometrieauflösung.

Übernehmen Sie den Standardwert **3** für **Result resolution** (Ergebnisauflösung). Damit erhalten Sie Ergebnisse mit einer akzeptablen Genauigkeit in einer angemessenen Zeit.

Wizard - Results and Geometry Resolu	ition							?	X
	Result re:	solution							>>>
. P	1	2	3	4	5	6	7	8	[
	Minimum	gap size	0						
	🛄 Manu	ual specific	ation of th	e minimum	n gap size				
A CONTRACT AND	Minin Minimum	num gap si 1 gap size:	ze refers to	o the featu	ire dimensi	on			
								**	
1 December 1	Minimum	wall thickn	ess						
	🔲 Manı	ual specific	ation of th	e minimum	n wall thick	iness			
	Minimum	num wall th wall thick	ickness re hess:	rers to the	: reature di	mension			
447748								1	
NJ BB									
X BR	Advanc	ed narrow	channel re	efinement	0	ptimize thin	i walls reso	olution	»
		< Ba	ick	Finish		Cancel		Help	

Klicken Sie auf die Schaltfläche Finish (Fertigstellen).

11 Modell im Grafikbereich anzeigen.

Verkleinern Sie die Ansicht, um das Rechengebiet im Grafikbereich anzuzeigen.

SolidWorks

Maschinenbaukonstruktion und Technologie

Rechengebiet

SolidWorks Flow Simulation Berechnungen werden in einem Volumen ausgeführt, das Rechengebiet genannt wird. Die Grenzen dieses Volumens sind parallel zu den Ebenen des globalen Koordinatensystems. Bei externen Strömungen wird die Größe des Rechengebiets automatisch anhand der Größe des Modells berechnet.

In der Abbildung rechts stellt der schwarze Kasten das Rechengebiet dar.

Modifizieren des Rechengebiets

Gründe für eine Modifizierung des Rechengebiets:

Größe

Das Rechengebiet soll verkleinert werden, um die Lösungszeit zu verringern, auf Kosten der Genauigkeit. Bei einem kleineren Rechengebiet sind weniger Fluidzellen zu berechnen. Bei Verwendung der Standardgrößen für das Rechengebiet kann der Lösungsvorgang selbst auf einem mittelschnellen Computer mehr als 1 Stunden dauern. Solche Lösungszeiten sind im Schulunterricht unpraktisch.

1 Die Flow Simulation Analysestruktur anzeigen.

Klicken Sie auf die Registerkarte **Flow Simulation analysis tree** (Flow Simulation Analysestruktur)

Klappen Sie den Ordner Input Data (Dateneingabe) auf.

2 Größe des Rechengebiets festlegen.

Klicken Sie mit der rechten Maustaste auf den Ordner Computational Domain (Rechengebiet).

Klicken Sie auf **Edit Definition** (Definition bearbeiten).

Geben Sie die folgenden Werte ein:

- X max = 0.16 m
- X min = -0.16 m
- Y min = 0.15 m
- Y max = -0.15 m
- Z max = 0.31 m
- Z min = -0.21 m

Klicken Sie im PropertyManager auf **OK**

3 Ergebnisse.

Das resultierende Rechengebiet wird im Grafikbereich eingeblendet.

Festlegen von Zielen

Sie können die folgenden vier technischen Ziele festlegen:

Globales Ziel

Ein physikalischer Parameter, der innerhalb des ganzen Rechengebiets berechnet wird.

Oberflächenziel

Ein physikalischer Parameter, der auf einer benutzerdefinierten Fläche des Modells berechnet wird.

Volumenziel

Ein physikalischer Parameter, der in einem benutzerdefinierten Raum innerhalb des Rechengebiets entweder im Fluid oder im Volumenkörper berechnet wird.

Gleichungsziel

Ein Ziel, das durch eine Gleichung definiert wird, die die angegebenen Ziele oder Parameter der Eingabedaten des angegebenen Projekts als Variablen enthält.

SolidWorks

Maschinenbaukonstruktion und Technologie

4 Globale Ziele einfügen.

Klicken Sie mit der rechten Maustaste auf den Ordner Goals (Ziele).

Klicken Sie auf **Insert Global Goals (Globale Ziele** einfügen). Der PropertyManager **Global Goals** (**Globale Ziele**) wird eingeblendet.

Tipp: Ziehen Sie den Rand des PropertyManager-Fensters nach rechts, um dieses zu verbreitern. Dadurch lassen sich die Parameternamen leichter lesen.

Ziel für Luftwiderstand festlegen. Gehen Sie (Bildlauf nach unten) in der Spalte Parameter zur Z - Component of Force (Z-Komponente der Kraft).

Aktivieren Sie das Kontrollkästchen **Max** (Maximum).

Klicken Sie im PropertyManager Global Goals (Globale Ziele) auf

OK *Sie* Zeigen Sie die Aktualisierung in der Flow Simulation Analysestruktur an.

6 Zweites globales Ziel einfügen. Klicken Sie mit der rechten Maustaste auf den Ordner Goals (Ziele).

> Klicken Sie in der Flow Simulation Analysestruktur auf **Insert Global Goals (Globale Ziele einfügen)**.

× ×						
Parameter						~
Parameter	Min	Av	Max	Bulk Av	Use	^
Mass Flow Rate					~	
Velocity					 Image: A start of the start of	
X - Component of Velocity					 Image: A start of the start of	_
Y - Component of Velocity					~	
Z - Component of Velocity						
Mach Number					 	
Turbulent Viscosity					 Image: A start of the start of	
Turbulent Time						
Turbulent Length						
Turbulent Intensity						
Turbulent Energy						
Turbulent Dissipation					~	
Heat Flux					\checkmark	
Heat Transfer Rate					~	
Normal Force					\checkmark	
X - Component of Normal					~	
Y - Component of Normal					V	
Z - Component of Normal					~	
Force					V	
X - Component of Force					~	
Y - Component of Force						
Z - Component of Force			K		V	
Shear Force			43		V	
X - Component of Shear F				Z - Cor	npone	nt of

7 Ziel für Auftriebskraft bzw. Abtriebskraft festlegen.

Gehen Sie (Bildlauf nach unten) in der Spalte **Parameter** zur **Y** - Component of Force (Y-Komponente der Kraft).

Aktivieren Sie das Kontrollkästchen **Max** (Maximum).

Klicken Sie im PropertyManager Global Goals (Globale Ziele) auf

OK . Betrachten Sie die Aktualisierung im FeatureManager.

Parameter 🔅					\$	
Parameter	Min	Av	Max	Bulk Av	Use	~
Velocity					V	
K - Component of Velo					V	
Y - Component of Velo					V	
Z - Component of Velo					V	
Mach Number					V	
Turbulent Viscosity					V	
Turbulent Time					V	
Turbulent Length					V	
Turbulent Intensity					V	
Turbulent Energy					V	
Turbulent Dissipation					V	
Heat Flux					V	
Heat Transfer Rate					V	
Normal Force					V	
X - Component of Norr					V	
Y - Component of Norr					V	
Z - Component of Norr					V	
Force					V	-
X - Component of Forc					V	
Y - Component of Forc			K		V	
Z - Component of Forc			L'S		V	
Shear Force				Y - Com	pone	nt of F
X - Component of She						
Y - Component of She					 Image: A set of the set of the	V

8 Ziele umbenennen.

In der Flow Simulation Analysestruktur werden zwei Zielsymbole angezeigt.

Benennen Sie GGZ - Component of Force 1 (GGZ - Kraftkomponente 1) in Drag (Luftwiderstand) um.

Benennen Sie GGY - Component of Force 1 (GGY - Kraftkomponente 1) in Lift (Auftriebskraft) um.

🗃 Lift

SolidWorks

Maschinenbaukonstruktion und Technologie

Ausführen der Analyse

 Analyse ausführen. Klicken Sie im Flow Simulation BefehlsManager auf Run (Ausführen) ▶. Das Dialogfeld Run (Ausführen) wird eingeblendet. Betrachten Sie die Optionen.

> Klicken Sie auf die Schaltfläche **Run (Ausführen)**.

2 Gleichungslöserinformationen.

Das Dialogfeld Run (Ausführen) wird eingeblendet. Links im Fenster wird ein Protokoll aller Schritte des Lösungsverfahrens angezeigt. Rechts befindet sich ein Fenster mit Netzinformationen und Warnungen in Bezug auf die Analyse.

Anmerkung: Die Analyse kann bis zu 15 Minuten dauern.

 Berechnung unterbrechen.
 Klicken Sie nach etwa 60
 Interrelationen auf der Solver-Symbolleiste auf die
 Schaltfläche Suspend

(Anhalten) . Damit werden die Berechnungen angehalten, so dass Sie einige der verschiedenen Vorschauarten untersuchen können.

Calculation time left

0:4:45

 Geschwindigkeit in der Vorschau anzeigen.
 Klicken Sie auf der Solver-Symbolleiste auf das Werkzeug Insert Preview (Vorschau einfügen) . Das Dialogfeld Preview Settings (Vorschaueinstellungen) wird eingeblendet.

> Wählen Sie **Right Plane** (Ebene rechts)als **Plane name** (Ebenennamen) aus.

Plane definition		ОК
Plane name:	Right Plane	Cance
Plane offset:	0 m	Help
Min/Max mode	Mode	
C Manual min/max	Contours	
	C Isolines	
Auto min/max	C Velocity vectors	

Wählen Sie Contours (Konturen) für Mode (Modus) aus.

Klicken Sie im Dialogfeld Preview Settings (Vorschaueinstellungen) auf die Registerkarte Settings (Einstellungen).

Wählen Sie **Velocity** (**Geschwindigkeit**) als **Parameter** aus. Sehen Sie sich die Optionen an.

Klicken Sie auf OK.

5 Vorschaufeld anzeigen.

Eine Vorschau des Geschwindigkeitsd iagramms wird in einem separaten Fenster angezeigt.

Zeigen Sie die Ergebnisse an.

Schließen Sie das Vorschaufenster.

	1	🌥 ок
Velocity	- 1	Cance
Velocity X-velocity Z-velocity Z-velocity Mach Number Turbulent Viscosity Turbulent Time		Help
125.474594 mile/h		
	ttributes Uptions Region Velocity X-velocity Z-velocity Z-velocity Mach Number Turbulent Viscosity Turbulent Time 125.474594 mile/h	Ittributes Uptions Hegion Velocity Velocity Y-velocity Y-velocity Y-velocity Z-velocity I-urbulent Viscosity I-urbulent Time 125.474534 mile/h

SolidWorks

Maschinenbaukonstruktion und Technologie

6 Druck in der Vorschau anzeigen.

Klicken Sie auf der Solver-Symbolleiste auf das Werkzeug Insert Preview (Vorschau

einfügen) . Das Dialogfeld Preview Settings (Vorschaueinstellungen) wird eingeblendet.

Wählen Sie **Right Plane (Ebene** rechts)als **Plane name** (Ebenennamen) aus.

efinition Settings Image Contours/Isolines options	e Attributes Options Region	 	OK
Parameter:	Pressure	R	Cance
Min :	100905.933 Pa	<u> </u>	Help
Max:	102024.064 Pa		
Velocity vectors options			
Maximum velocity:	72.9385386 mile/h		
	min .	max	
Vector spacing :)		

Wählen Sie Contours (Konturen) für Mode (Modus) aus.

Klicken Sie auf die Registerkarte Settings (Einstellungen).

Wählen Sie Pressure (Druck) als Parameter aus.

Klicken Sie auf **OK**. Zeigen Sie die Ergebnisse an.

Schließen Sie das Vorschaufenster.

 7 Berechnung wieder aufnehmen.
 Schließen Sie das Vorschaufenster

> Klicken Sie auf der Solver-Symbolleiste auf das Werkzeug Suspend (Anhalten)

8 Fertigstellung. In der Statusleiste am unteren Rand des Fensters wird angezeigt, wenn der Solver die Berechnung abgeschlossen hat.

i Info		Bilos		
Barameter	Value	Event	Theration	Time
Status Faid cells Teradona Lost teraton finished Lost teraton finished CPU time per last keration Travels Travels Eratons per travel Eratons per travel Calculation time left	Solver is freished. 27762 1915 88 16:24:17 00:00:01 1.40084 63 0:11:29 0:0:0 0:0:0	Mech generation started Mech generation normally finished Propering data for calculation Calculation started Calculation has converged Calculation finished Calculation finished	0 87 87 88	16:15:20, Nov 04 16:15:41, Nov 04 16:15:45, Nov 04 16:15:45, Nov 04 16:15:48, Nov 04 16:24:17, Nov 04 16:24:17, Nov 04
Varning o warnings	Comment		×	

9 Solver-Fenster schließen.

Klicken Sie im Dialogfeld **Solver** auf **File (Datei)**, **Close (Schließen)**.

🧕 Solver: Initial Block	k (1)(Race Car.SLDASM)
File Calculation View In	nsert Window Help
Save Current Results	
Close	
Sante and Close	
Parameter	Value
Status	Solver is finished.
Fluid cells	27762
Partial cells	1915
Iterations	88
Last iteration finished	16:24:17
CPU time per last iteration	00:00:01
Travels	1.40884
Iterations per 1 travel	63
Cpu time	0:1:29
Calculation time left	0:0:0

Lektion 5: Analyse

SolidWorks

Maschinenbaukonstruktion und Technologie

10 Rechengebiet ausblenden. Klicken Sie mit der rechten Maustaste auf den Ordner Computational Domain (Rechengebiet).

Klicken Sie auf **Hide** (Ausblenden).

11 Dokument speichern. Klicken Sie auf der Menüleisten-

Symbolleiste auf **Speichern .**

Anzeigen der Ergebnisse

Nach Abschluss der Berechnung können Sie die gespeicherten Rechenergebnisse über zahlreiche Flow Simulation Optionen direkt im Grafikbereich anzeigen. Folgende Ergebnisoptionen sind verfügbar:

- Cut Plots (Schnittdarstellungen) (Schnittansicht der Parameterverteilung)
- Section Plots (Profildarstellungen) (erzeugt Konturen der Ergebnisse auf den angegebenen Profilen)
- Flow Trajectories (Durchflussbahnen) (Stromlinien und Teilchenbahnen)
- Goal Plot (Zieldarstellung) (Verhalten der angegebenen Ziele während der Berechnung)
- XY Plots (XY-Darstellungen)
 (Parameteränderung entlang einer Kurve, Skizze)
- Surface Parameters (Oberflächenparameter) (Ermitteln von Parametern bei bestimmten Oberflächen)
- Point Parameters (Punktparameter) (Ermitteln von Parametern an bestimmten Punkten)
- Report (Bericht) (Projektberichtausgabe in Microsoft Word)
- Animation of results (Bewegungssimulation der Ergebnisse)

und mehr.

Als nächstes sollen Schnittdarstellungen,

Oberflächendarstellungen und Durchflussbahnen betrachtet werden.

Load Results

Sect Results

Plot Manager...

Parameter List...

SolidWorks Maschinenbaukonstruktion und Technologie

Zugreifen auf die Ergebnisse

1 Ergebnisse gegebenenfalls laden. Klicken Sie in der Flow Simulation Analysestruktur mit der rechten Maustaste auf den Ordner Results (Ergebnisse).

Klicken Sie auf Load Results (Ergebnisse laden). Das Dialogfeld Load Results (Ergebnisse laden) wird eingeblendet.

Anmerkung: Wenn Unload Results (Ergebnisse entladen) angezeigt

wird, sind die Ergebnisse schon geladen.

Doppelklicken Sie auf 1.fld.

Schnittdarstellung erstellen.

Klicken Sie mit der rechten Maustaste auf den Ordner Cut Plots (Schnittdarstellungen).

Klicken Sie auf **Insert (Einfügen)**. Der PropertyManager **Cut Plot (Schnittdarstellung)** wird eingeblendet. **Front Plane (Ebene vorne)** ist standardmäßig ausgewählt.

Klappen Sie im aufschwingenden FeatureManager Race Car auf. Sehen Sie sich die Features an.

Klicken Sie im aufschwingenden FeatureManager auf Right Plane (Ebene rechts). Right Plane (Ebene rechts) wird im Feld Selection Plane or Planar Face (Auswahlebene oder ebene Fläche) angezeigt.

Klicken Sie im Feld Display (Anzeige) auf die Schaltfläche **Contours** (Konturen).

	Ă	Ba	atch Results	Processing.
		Flow	Trajectorie	s
i 🔁	~	G	🦻 📂 🛄	
sresults_tmp 1.cpt				
國 r_000000.fld				
Dateiname:	1		~	Öffnen
Dateityp:	(*.fld;*.cpt)		~	Abbrecher

Results

耕

Q

Lektion 5: Analyse

Klicken Sie im Feld Contours (Konturen) auf die Schaltfläche **Adjust Minimum and Maximum** (Minimum und Maximum anpassen).

Wählen Sie **Velocity** (Geschwindigkeit) im Dropdown-Menü aus.

Betrachten Sie den Bereich.

2 Profildarstellung anzeigen. Klicken Sie im PropertyManager Cut Plot

(Schnittdarstellung) auf OK . Zeigen Sie die Profildarstellung im Grafikbereich an.

Anmerkung: Möglicherweise müssen Sie auf die Registerkarte Hide FeatureManager Tree Area (FeatureManager ausblenden) klicken, um die ganze Darstellung sehen zu können.

3 Zeigen Sie die Ergebnisse an. Klicken Sie auf der Voransichts-Symbolleiste

auf die Ansicht **Rechts** Ø. Zeigen Sie die Ergebnisse an.

Anmerkung: Sehen Sie sich die

Hochgeschwindigkeitsbereiche in Rot und Orange um das Modell herum an.

4 Schnittdarstellung ausblenden. Klicken Sie mit der rechten Maustaste auf Cut Plot1 (Schnittdarstellung 1).

Klicken Sie auf Hide (Ausblenden).

5 Zweite Schnittdarstellung erstellen.

Klicken Sie mit der rechten Maustaste auf den Ordner Cut Plots (Schnittdarstellungen).

Klicken Sie auf **Insert (Einfügen)**. Front Plane (Ebene vorne) ist standardmäßig ausgewählt.

6 Ausgewählte Ebene ändern.

Klappen Sie im aufschwingenden FeatureManager die Baugruppe Race Car auf.

Klicken Sie im aufschwingenden FeatureManager auf Right Plane (Ebene rechts). Right Plane (Ebene rechts) wird im Feld Selection Plane (Auswahlebene) angezeigt.

Klicken Sie im Feld Display (Anzeige) auf die Schaltfläche **Contours** (Konturen).

7 Einstellungen anzeigen.

Klicken Sie im Feld Contours (Konturen) auf die Schaltfläche **Adjust Minimum and Maximum** (Minimum und Maximum anpassen).

Betrachten Sie den Bereich.

Wählen Sie im Dropdown-Menü für die Einstellung **Parameter** die Option **Pressure (Druck)**.

Geben Sie den Min.-Wert 100900 ein.

Geben Sie den Max.-Wert **101700** ein.

8 Profildarstellung anzeigen. Klicken Sie im PropertyManager Cut Plot

(Schnittdarstellung) auf OK . Zeigen Sie die Profildarstellung im Grafikbereich an.

Cut Plot 2 wird in der Flow Simulation Analysestruktur angezeigt.

Anmerkung: Klicken Sie gegebenenfalls auf die Registerkarte FeatureManager, um den ganzen Grafikbereich anzuzeigen (siehe Abbildung).

9 Zweite Darstellung anzeigen. Klicken Sie auf der Voransichts-Symbolleiste auf die Ansicht Rechts B. Betrachten Sie die Darstellung.

Lektion 5: Analyse

10 Schnittdarstellung ausblenden. Klicken Sie mit der rechten Maustaste auf den Ordner Cut Plots.

Klicken Sie auf **Hide All (Alles ausblenden)**. Zeigen Sie das Modell im Grafikbereich an.

11 Isometrische Ansicht anzeigen. Klicken Sie auf der Voransichts-

Symbolleiste auf Isometrisch 🔯

12 Dokument speichern. Klicken Sie auf der Menüleisten-Symbolleiste auf Speichern .

SolidWorks

Maschinenbaukonstruktion und Technologie

Durchflussbahnen

Durchflussbahnen werden als Stromlinien angezeigt. Stromlinien sind Kurven, bei denen der Vektor der Strömungsgeschwindigkeit an jedem Punkt der Kurve tangential zu der Kurve ist.

- Tipp: Sie entsprechen einer Rauchfahne in einem Windkanal.
 - Durchflussbahn 1 einfügen. Klicken Sie im Flow

aktiv.

Simulation BefehlsManager auf

Durchflussbahnen Die Referenzoption ist

Klicken Sie mit der rechten Maustaste in das Auswahlfeld, und wählen Sie Clear Selections (Auswahl aufheben).

Klicken Sie auf die zehn ebenen Oberflächen des Rennwagenblocks (Race Car Block).

Klicken Sie auf die Fläche der vier Räder.

Geben Sie 50 für die Number of Point (Anzahl der Punkte) ein.

A Run ∰ ∰	Load/Unload Results	 ★ ↓ ↓	Flow Simula	Flow Simulati	
Esquisse	Evaluer	Produits	ffice Flow S	Simulation	
		Flov	n Trajectorie: Trajectorie: Trajecto	s ries	🥐 🉈 + 🛒 +

Wählen Sie im Dropdown-Menü Draw

Trajectories As (Bahnen zeichnen als) die Option Line with Arrow (Linie mit Pfeil) aus.

Klicken Sie im PropertyManager Flow

Trajectories (Durchflussbahnen) auf **OK** .

2 Durchflussbahn anzeigen.

Mit dieser Art von Anzeige lassen sich die Luftströmungen um das Fahrzeug herum leichter veranschaulichen.

Drehen Sie das Modell im Grafikbereich, um die Turbulenz an den Vorderrädern und hinter dem Block anzuzeigen.

3 Dokument speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf Speichern

æ	Lines with Arrows	*
×	0.003 m	*
٥.	Pressure	
	J	V
60	0	1

Experimentieren mit anderen Durchflussbahnen

Mit Durchflussbahnen können Sie auf zweierlei Arten experimentieren:

- Bearbeiten der Definition der vorhandenen Darstellung
- Einfügen einer neuen Darstellung

Wenn Sie mehrere Durchflussbahnen erstellen, können Sie sie nacheinander oder gleichzeitig anzeigen.

Sie erstellen nun weitere Durchflussbahnen.

4 Durchflussbahn ausblenden.

Klicken Sie mit der rechten Maustaste auf Flow Trajectories 1.

Klicken Sie auf Hide (Ausblenden).

5 Neue Durchflussbahndarstellung einfügen. Klicken Sie mit der rechten Maustaste auf den Ordner Flow Trajectories.

Klicken Sie auf Insert (Einfügen).

Klicken Sie mit der rechten Maustaste und wählen Sie Clear Selections (Auswahl aufheben) aus.

Klicken Sie im aufschwingenden Feature Manager auf Right Plane (Ebene rechts).

Geben Sie **200** für die Number of Points (Anzahl der Punkte) ein.

Wählen Sie im Dropdown-Menü Draw Trajectories As (Bahnen zeichnen als) die Option **Lines** (Linien) aus.

Klicken Sie im PropertyManager Flow

Trajectories (Durchflussbahnen) auf **OK**

6 Ansicht "Rechts" anzeigen.

Klicken Sie auf der Voransichts-Symbolleiste auf die

Ansicht **Rechts 1**.

Anmerkung: Beachten Sie die Turbulenz vor und hinter dem Körper des Blocks.

1 Weitere Durchflussbahndarstellung einfügen.

Klicken Sie mit der rechten Maustaste auf Flow Trajectories 2.

Klicken Sie auf Hide (Ausblenden).

Klicken Sie mit der rechten Maustaste auf den Ordner Flow Trajectories.

Klicken Sie auf Insert (Einfügen).

Klicken Sie mit der rechten Maustaste, und wählen Sie Clear Selections (Auswahl aufheben) aus.

Klicken Sie auf der Voransichts-Symbolleiste auf **Isometrisch** .

Klicken Sie auf die vordere Fläche des Rennwagens.

Geben Sie **50** für die Number of Points (Anzahl der Punkte) ein.

Wählen Sie im Dropdown-Menü Draw Trajectories As (Bahnen zeichnen als) die Option **Lines** (Linien) aus.

Klicken Sie im PropertyManager Flow

Trajectories (Durchflussbahnen) auf **OK**

Tipp:Wegen der geringeren Anzahl von
Durchflussbahnlinien ist leichter zu erkennen, ob das
Modell von merklichen Turbulenzen umgeben ist.

An den Durchflussbahnen lässt sich folgendes erkennen:

- Die rote Farbe der Durchflussbahnen am vorderen Körper der Baugruppe Race Car zeigt einen Bereich hohen Drucks an. Dieser Druck beeinflusst die Geschwindigkeit des Rennwagens (Race Car).
- Die Durchflussbahnen hinter den R\u00e4dern sind ziemlich gleichm\u00e4\u00dfig, was darauf hinweist, dass keine Turbulenz vorhanden ist.
- 2 Alle Durchflussbahnen ausblenden. Klicken Sie mit der rechten Maustaste auf den Ordner Flow Trajectories.

Klicken Sie auf Hide All (Alles ausblenden).

3 Dokument speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf

Speichern 🖩.

Quantitative Ergebnisse

Die vorhergehenden Beispiele von Oberflächendarstellungen und Durchflussbahnen sind ausgezeichnete Werkzeuge zum Veranschaulichen, wie Luft um einen Körper herumströmt. Sie sind allerdings mehr qualitativ als quantitativ. Im Folgenden soll eine eher quantitative Interpretation der Ergebnisse vorgestellt werden.

Anmerkung: Für den nächsten Abschnitt wird

Microsoft[®] Excel benötigt.

1 Zieldarstellung erstellen. Klicken Sie auf der Registerkarte Flow Simulation auf das Werkzeug Goal

Plot (Zieldarstellung). Der PropertyManager Goal Plot (Zieldarstellung) wird eingeblendet.

Klicken Sie auf das Kontrollkästchen All (Alle). Die drei Kontrollkästchen sind aktiviert.

Klicken Sie im PropertyManager Goal Plot (Zieldarstellung) auf **OK**

2 Excel Arbeitsblatt.

Microsoft[®] Excel wird gestartet und ein Arbeitsblatt wird geöffnet. Betrachten Sie insbesondere die ersten drei Spalten. Sie enthalten den Namen des Ziels, die Einheiten (gram-force/Pond in diesem Fall) und den Wert.

Race	Car.S	LDASM	[Initial	Bloc	:k (′	1)]
------	-------	-------	----------	------	-------	-----

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value
Drag	[p]	-150.2828991	-150.2881854	-150.5283354	-150.1493924
Lift	[q]	9.080182532	8.663085807	8.120552837	9.080213979
Iterations: 120	1 and a				

Analysis interval: 43

Anmerkung: Die Werte können je nach dem Vernetzungstyp und der Systemeinrichtung etwas variieren.

Baugruppe speichern und schließen.
 Klicken Sie auf Datei, Speichern. Übernehmen Sie den Standardnamen.

Klicken Sie auf Speichern.

Schließen Sie das **Excel** Arbeitsblatt.

Einheiten, Werte und Interpretation der Ergebnisse

Pond (gram-force) ist, wie schon erwähnt, eine Einheit der Kraft und ist etwa so groß wie die Gewichtskraft einer Masse von 1 g auf der Erde. Der Luftwiderstand am Fahrzeug ist eine Kraft. Gramm ist eine Masseneinheit. Man kann also nicht sagen, der Luftwiderstand beträgt etwa -150.28 Gramm.

Richtig muss es heißen: Die Luftwiderstandskraft beträgt etwa 150.28 Pond und die nach unten gerichtete Abtriebskraft beträgt etwa 9,08 Pond.

Ändern der Konstruktion

Anhand der Analyse der Baugruppenkonfiguration Race Car (Initial Block) mithilfe von SolidWorks Flow Simulation lässt sich folgern, dass die Form des Körpers erheblich verbessert werden kann.

Eine Analyse lässt sich am einfachsten erneut durchführen, indem das SolidWorks Flow Simulation Projekt, das für die Konstruktion des anfänglichen Blocks erstellt wurde, geklont wird. So brauchen Sie die Ziele nicht erneut hinzufügen und das Rechengebiet nicht neu definieren. Sie können aber

Darstellungen nicht wiederverwenden, bei denen neue Features an der endgültigen Standard-Race Car-Konfiguration erstellt wurden.

Um Zeit zu sparen, wird die endgültige Standardkonfiguration für diesen Abschnitt zur Verfügung gestellt. Mit Hilfe von Konfigurationen können Sie mehrere Varianten eines Teils in einer einzelnen SolidWorks Datei darstellen. Zum Beispiel kann die Konstruktion durch Unterdrücken von Features und Ändern der Bemaßungswerte des Modells mühelos geändert werden, ohne ein weiteres neues Modell erstellen zu müssen.

- **Tipp:** Eine Konfiguration kann geändert werden, so dass die Bemaßung einen anderen Wert annimmt. Sowohl bei Teilen und als auch Baugruppen kann die Konfiguration geändert werden.
- Anmerkung: Einige der referenzierten Flächen der Fahrzeugkarosserie sind in der endgültigen Standardkonfiguration nicht vorhanden. Sie wurden entfernt, als Schnitt-Features und Verrundungen auf den Körper angewendet wurden. Deshalb muss die Referenz neu definiert werden, bevor Darstellungen angezeigt werden können. Außerdem wurde das Achsen-Teil (Axle) in der ursprünglichen Block-Konfiguration modifiziert, um die Baugruppe zu fixieren.
SolidWorks

Maschinenbaukonstruktion und Technologie

4 Projekt klonen.

Klicken Sie in der Flow Simulation Analysestruktur mit der rechten Maustaste auf die Konfiguration Initial Block (1) (Anfänglicher Block).

Klicken Sie auf Clone Project (Projekt klonen).

Klicken Sie auf Add to existing (Zu bestehendem hinzufügen).

Wählen Sie Default (Standard) für Existing configuration (Bestehende Konfiguration) aus.

Aktivieren Sie das Kontrollkästchen Copy results (Ergebnisse kopieren).

Klicken Sie auf **OK**. In einer Meldung werden Sie gefragt, ob Sie das Rechengebiet zurücksetzen möchten.

Klicken Sie auf No (Nein).

Anmerkung: Um einen sinnvollen Vergleich der zwei Ergebnissätze leichter durchführen zu können, verwenden Sie gleich große Rechengebiete. Außerdem müssten Sie beim Neufestlegen des Rechengebiets die Symmetriebedingungen neu definieren. Dies würde extra Arbeit bedeuten.

5 Netzeinstellungen zurücksetzen.

Möchten Sie die Netzeinstellungen zurücksetzen? Klicken Sie auf **Yes (Ja)**.

6 Solver ausführen.

Klicken Sie im Flow Simulation BefehlsManager auf **Run (Ausführen)**.

Klicken Sie im Dialogfeld **Run** (Ausführen) auf **Run (Ausführen)**. Die Berechnung kann 10 bis 15 Minuten dauern.

Clone Project	? 🛛
O Create new	
 Add to existing 	
Configuration name:	
Initial Block (2)	
Existing configuration:	
Default	~
Copy results	

7 Fertigstellung.

In der Statusleiste am unteren Rand des Fensters wird angezeigt, wenn der Solver die Berechnung abgeschlossen hat.

Schließen Sie das Dialogfeld **Solver**.

Solver: Default(Race Ca	.SLDASM)		
IIII > C			
1 Info		E Log	
Parameter	Value	Event	Iteration Time
Status Fluid cells Partial cells Rerations Last iteration finished CPU time per last iteration Travels Rerations per 1 travel Cpu time Calculation time left	Solver is finished. 31139 1861 85 17:10:32 00:00:01 1.3201 65 0:1:32 0:0:0	Mesh generation started Mesh generation normally finished Preparing data for calculation Calculation started Calculation started Calculation has converged Calculation finished	17:07:37, Nov 05 17:08:16, Nov 05 17:08:14, Nov 05 0 17:08:19, Nov 05 84 17:10:32, Nov 05 84 17:10:32, Nov 05 84
Warning No warnings	Comment		
1 Info	Solver	is finished	Trerations 1 85

Prüfen der Ergebnisse

1

Ergebnisse laden. Klicken Sie auf die Registerkarte Flow Simulation analysis tree (Flow Simulation Analysestruktur) . Prüfen Sie die Ergebnisse für die Standardkonfiguration (Default). Die Standardkonfiguration (Default) ist die endgültige Konfiguration der Baugruppe Race Car.

1 Durchflussbahndarstellung erstellen.

Klicken Sie mit der rechten Maustaste auf den Ordner Flow Trajectories.

Klicken Sie auf Insert (Einfügen).

Klicken Sie auf der Voransichts-Symbolleiste auf

Isometrisch 🔍

Falls erforderlich, klicken Sie mit der rechten Maustaste und wählen Sie **Clear Selections (Auswahl aufheben)** aus.

Lektion 5: Analyse

Klicken Sie auf die vordere Fläche des Rennwagens (Race Car).

Geben Sie **50** für die Number of Points (Anzahl der Punkte) ein.

Wählen Sie im Dropdown-Menü Draw Trajectories As (Bahnen zeichnen als) die Option Lines (Linien) aus.

2 Einstellungen anzeigen.

Klicken Sie auf die Schaltfläche **Adjust Minimum and Maximum** (Minimum und Maximum anpassen).

Wählen Sie im Dropdown-Menü für die Einstellung **Parameter** die Option **Pressure** (**Druck**).

Geben Sie den Min.-Wert 100900 ein.

Geben Sie den Max.-Wert **101700** ein.

Klicken Sie im PropertyManager Flow Trajectories (Durchflussbahnen) auf

ОК 📝

Die folgenden Abbildungen enthalten die zwei Durchflussbahndarstellungen Race Car (ursprünglicher Block) und die endgültige Standard-Race Car-Konfiguration im Vergleich. Zeigen Sie die Druckbereiche an.

Appe	earance	*
*	Lines	~
×	2	
	Pressure	
Ē.	101700 Pa 🔶	÷ 🕵 🔊
E.	100900 Pa 🔶	* * *

3 Durchflussbahndarstellung modifizieren.

Platzieren Sie den Cursor im Grafikbereich über **Pressure** (**Pa**) (**Druck -Pa**), wie in der Abbildung dargestellt.

Klicken Sie auf **Pressure (Pa)** (**Druck)**. Zeigen Sie das Dropdown-Menü an.

Klicken Sie auf Velocity (Geschwindigkeit).

Klicken Sie auf das **grüne** Häkchen.

Zeigen Sie die neue Durchflussbahndarstellung an.

SolidWorks

Maschinenbaukonstruktion und Technologie

Alle Durchflussbahnen ausblenden. 4 Klicken Sie mit der rechten Maustaste auf den Ordner Flow Trajectories.

Klicken Sie auf Hide All (Alles ausblenden).

5 Dokument speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf

Speichern 🔙

Klicken Sie auf **OK**.

Quantitative Ergebnisse

Anmerkung: Für den nächsten Abschnitt wird

Microsoft[®] Excel benötigt.

Zieldarstellung erstellen. 1

Klicken Sie auf der Registerkarte Flow Simulation auf das Werkzeug Goal Plot

(Zieldarstellung). Der PropertyManager Goal Plot (Zieldarstellung) wird eingeblendet.

Klicken Sie auf das Kontrollkästchen All (Alle).

Klicken Sie im PropertyManager Goal Plot

(Zieldarstellung) auf **OK**

Lift

8 ê

0

💁 🗸 📀

Elow

Simula..

6

Results

dukte

Load/Unload 📙

2

Simulati..

23

务

2 Excel Arbeitsblatt.

Microsoft[®] Excel wird gestartet und ein Arbeitsblatt wird geöffnet. Betrachten Sie insbesondere die ersten drei Spalten. Sie enthalten den Namen des Ziels, die Einheiten (gram-force/Pond in diesem Fall) und den Wert.

Race Car.SLDASM [Default]

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value
Drag	[q] [-59.76460286	-59.47196595	-59.76460286	-58.93868992
Lift	[p]	-29.07469124	-28.92692062	-29.24218015	-28.54302559
Iterations: 85 Analysis interval: 3	3		1		

Race Car.SLDASM [Initial Block (1)]

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value
Drag	[q]	-150.2828991	-150.2881854	-150.5283354	-150.1493924
Lift	[p]	9.080182532	8.663085807	8.120552837	9.080213979
Iterations: 120					al-

Analysis interval: 43

Race Car.SLDASM [Default]

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value
Drag	[q] [-59.76460286	-59.47196595	-59.76460286	-58.93868992
Lift	[q]	-29.07469124	-28.92692062	-29.24218015	-28.54302559
Iterations: 85 Analysis interv	al: 33				

Anmerkung: Die Werte können je nach dem Vernetzungstyp und der Systemeinrichtung variieren.

Der Luftwiderstand für die neue Konstruktion beträgt 59.76 Pond. Der Luftwiderstand des ursprünglichen Blocks betrug 150.28 Pond.

Prozentuale Verbesserung

Zum Ermitteln der prozentualen Verbesserung verwenden Sie die folgende Formel:

 $\left(\frac{InitialValue - FinalValue}{InitialValue}\right) \times 100 = PercentageChange$

Zur Vereinfachung runden Sie auf 2 Dezimalstellen. Daraus ergibt sich:

Die Änderungen führten beim Luftwiderstand zu einer Verringerung um etwa 60,23%!

Was lässt sich über die Auf- bzw. Abtriebskraft sagen?

Die ursprüngliche Blockkonstruktion wies eine *nach oben wirkende Auftriebskraft* von etwa 9.08 Pond auf. Die modifizierte Konstruktion weist eine *nach unten wirkende Abtriebskraft* von etwa 29.07 Pond auf. Mit dem vorderen Flügel wird also erreicht, dass das Vorderteil des Fahrzeugs bei hohen Geschwindigkeiten nach unten gedrückt wird.

3 Excel Arbeitsblatt speichern und schließen. Klicken Sie auf Speichern.

Schließen Sie das Excel Arbeitsblatt.

4 Dokument speichern.

Klicken Sie auf der Menüleisten-Symbolleiste auf **Speichern**

5 Alle Modelle und Dialogfelder schließen. Klicken Sie auf Datei, Schließen.

Experimentieren Sie weiter!

Verwenden Sie, was Sie gelernt haben, und untersuchen Sie einige weitere Konstruktionsänderungen. Oder besser noch, entwickeln Sie Ihre eigene Fahrzeugkarosseriekonstruktion. Mit SolidWorks Flow Simulation als virtuellem Windkanal können Sie mit vielen verschiedenen Ideen und Ansätzen experimentieren, bevor Sie mit dem Sägen bzw. Schneiden von Holz beginnen.

Durchsuchen Sie das Internet nach Ideen zum Konstruieren Ihres Fahrzeugs. Die folgende Website ist eine ausgezeichnete Quelle:

http://www.science-of-speed.com

Klicken Sie auf Showroom.

Mit SolidWorks in Verbindung mit SolidWorks Flow Simulation können Sie mühelos viele Konstruktionsvarianten untersuchen. Viel Spaß!

SolidWorks Flow Simulation

Während dieser kurzen Sitzung zur Verwendung von SolidWorks Flow Simulation wurden die Hauptkonzepte der Fließverhaltens-Simulation von Fluiden kurz vorgestellt. SolidWorks Flow Simulation vermittelt einen Einblick in Teile und Baugruppen und das zugehörige Fließverhalten, die Wärmeübertragung und Kräfte auf eingetauchte oder von Fluiden umgebene Volumenkörper.

Das einzige vollständig in SolidWorks integrierte Produkt zur Simulation des Fließverhaltens, SolidWorks Flow Simulation, ist unglaublich einfach zu verwenden; Sie sagen einfach der Software, woran Sie interessiert sind, anstatt Analysekonstruktionsziele in numerische Kriterien und Iterationszahlen übersetzen zu müssen.

Greifen Sie auf physikalische Fluidmodelle für technische Anwendungen zu. SolidWorks Flow Simulation kann eine breite Palette von reellen Fluiden wie Luft, Wasser, Saft, Speiseeis, Honig, Kunststoffschmelzen, Zahnpasta und Blut analysieren. Dies macht die Anwendung in fast jedem Industriesektor ideal für Ingenieure.

Simulieren Sie reelle Betriebsbedingungen. SolidWorks Flow Simulation enthält verschiedene Typen von Randbedingungen zum Darstellen von Situationen aus dem täglichen Leben.

Automatisieren Sie Fluidströmungsaufgaben. SolidWorks Flow Simulation nutzt verschiedene Automatisierungswerkzeuge, um Analyseprozesse zu vereinfachen und Ihnen zu helfen, effizienter arbeiten zu können.

Interpretieren Sie die Ergebnisse mit leistungsstarken und intuitiven Werkzeugen zur Veranschaulichung. Nach Abschluss Ihrer Analyse bietet SolidWorks Flow Simulation verschiedene Werkzeuge zur Veranschaulichung der Ergebnisse. Mit diesen Werkzeugen können Sie einen wertvollen Einblick in die Leistungsfähigkeit Ihres Modells erhalten.

Arbeiten Sie mit anderen zusammen und stellen Sie Ihre Analyseergebnisse anderen zur Verfügung. Wenn Sie SolidWorks Flow Simulation einsetzen, können Sie problemlos mit anderen zusammenarbeiten und Analyseergebnisse allen Personen, die am Produktentwicklungsprozess beteiligt sind, auf effiziente Weise zur Verfügung stellen.