

使用 SolidWorks Simulation 執行應力 分析的簡介 學員指南

Dassault Systèmes SolidWorks Corporation 300 Baker Avenue Concord, Massachusetts 01742 USA 電話: +1-800-693-9000

在美國境外請電:+1-978-371-5011 傳真:+1-978-371-7303 電子郵件:info@solidworks.com 網站:http://www.solidworks.com/education © 1995-2010, Dassault Systèmes SolidWorks Corporation, a Dassault Systèmes S.A. company, 300 Baker Avenue, Concord, Mass. 01742 USA。版權所有。

本文件中提及的資訊和軟體如有更改,恕不另行通知, Dassault Systèmes SolidWorks Corporation (DS SolidWorks)亦不 作任何承諾。

未經 DS SolidWorks 明確書面許可,不得以任何形式或透過任何手段(電子或機械)為任何目的複製或傳輸任何有關材料。 本文中提及的軟體受許可協議限制,只能按照許可協議的條款

進行使用或複製。所有 DS SolidWorks 對軟體和文件提供的保固 均在使用許可協議書中闡明,對於其中沒有提及或暗示的,此 文件及其內容將被視爲任何條款(包括保固)的修改和補充。

專利聲明

SolidWorks[®] 3D 機械 mechanical CAD 軟體受美國專利 5,815,154; 6,219,049; 6,219,055; 6,611,725; 6,844,877; 6,898,560; 6,906,712; 7,079,990; 7,477,262; 7,558,705; 7,571,079; 7,590,497; 7,643,027; 7,672,822; 7,688,318; 7,694,238; 7,853,940; 及外國專 利(如 EP 1,116,190 及 JP 3,517,643) 保護。

eDrawings[®] 軟體受美國專利 7,184,044; 7,502,027; 及加拿大專利 2,318,706 保護。

另有美國和外國專利申請中。

SolidWorks 產品與服務的商標及產品名稱

SolidWorks、3D PartStream.NET、3D ContentCentral、 eDrawings、PDMWorks 以及 eDrawings 標誌是 DS SolidWorks 的註冊商標, FeatureManager 是 DS SolidWorks 所共同擁有的 註冊商標。

CircuitWorks、Feature Palette、FloXpress、PhotoWorks、 TolAnalyst 和 XchangeWorks 是 DS SolidWorks 的商標。

FeatureWorks 是 Geometric Software Solutions Ltd. 的註冊商標。

SolidWorks 2011、SolidWorks Enterprise PDM、SolidWorks Simulation、SolidWorks Flow Simulation 及 eDrawings Professional 是 DS SolidWorks 的產品名稱。

其他商標或產品名稱是各自所有者的商標或註冊商標。

商用電腦軟體 - 所有權

美國政府限制權利。政府的使用、複製或公佈應遵守 FAR 52.227-19(商用電腦軟體-限制權利)、DFARS 227.7202(商用電腦軟體和商用電腦軟體文件)以及本許可證協議書中適用的限制。

承包商/廠商:

Dassault Systèmes SolidWorks Corporation, 300 Baker Avenue, Concord, Massachusetts 01742 USA

SolidWorks Standard、Premium、Professional 及 Education 產品的版權聲明

本軟體部份版權 © 1986-2010 Siemens Product Lifecycle Management Software Inc.。版權所有。

本軟體部份版權 © 1986-2010 Siemens Industry Software Limited。版權所有。

本軟體部份版權 © 1998-2010 Geometric Ltd.

本軟體部份版權 © 1996-2010 Microsoft Corporation。版權所有。

本軟體部份併入由 NVIDIA 2006-2010 版權所有的 PhysX™。

本軟體部份版權 © 2001 - 2010 Luxology, Inc.。版權所有,專利申請中。

本軟體部份版權 © 2007 - 2010 DriveWorks Ltd.。

版權 1984-2010 Adobe Systems Inc. 及其授權人。版權所有。受 美國專利 5,929,866; 5,943,063; 6,289,364; 6,563,502; 6,639,593; 6,754,382 保護,專利申請中。

Adobe、Adobe 標誌、Acrobat、Adobe PDF 標誌、Distiller 和 Reader 是 Adobe Systems Inc. 在美國及其他國家/地區的註冊商 標或商標。

如需更多版權資訊,請參閱 SolidWorks 中的「說明」>「關於 SolidWorks」。

SolidWorks Simulation 產品的版權聲明

本軟體部份版權 © 2008 Solversoft Corporation。

PCGLSS © 1992-2007 Computational Applications and System Integration, Inc.。版權所有。

Enterprise PDM 產品的版權聲明

Outside In[®] Viewer Technology, c Copyright 1992-2010, Oracle © Copyright 1995-2010, Oracle。版權所有。

本軟體部份版權 © 1996-2010 Microsoft Corporation。版權所有。

eDrawings 產品的版權聲明

本軟體部份版權 © 2000-2010 Tech Soft 3D。

本軟體部份版權 © 1995-1998 Jean-Loup Gailly and Mark Adler。

本軟體部份版權 © 1998-2001 3D connexion。

本軟體部份版權 © 1998-2010 Open Design Alliance。版權所有。

本軟體部份版權 © 1995-2009 Spatial Corporation。

本軟體基於 Independent JPEG Group 的部分研發成果。

關於本課程

使用 SolidWorks Simulation 執行應力分析的簡介及其輔助資料,設計用於協助您在 學術環境下學習 SolidWorks Simulation。

線上學習單元

使用 SolidWorks Simulation 執行應力分析的簡介是 SolidWorks Simulation 線上學習單元的配套資源與補 充材料。

存取學習單元

要啓動線上學習單元,請依序按一下說明、SolidWorks 學習單元、所有 SolidWorks 學習單元。SolidWorks 視 窗會重新調整大小,旁邊將出現另外一個視窗,其 中列出了可用的學習單元。當您將遊標移到連結上 時,該學習單元的圖例會出現在視窗底部。按一下 所需的連結以啓動該學習單元。

規則

將螢幕解析度設定為 1280x1024 以獲取學習單元的 最佳檢視效果。

學習單元中會出現以下圖示:

Next ≥ 移至學習單元的下一個螢幕。

- 只需按一下課程中出現的大多數工具列按鈕,便 會使對應的 SolidWorks 按鈕閃爍顯示。第一次按 該按鈕時,會出現一則 ActiveX 控制訊息:在此

頁上的 ActiveX 控制項和本頁上其他部分的互動可能不安全。您要允許這種互動嗎?此爲標準預防措施。線上學習單元中的 ActiveX 控制<u>不會</u>損壞系統。如 果按一下否,便會停用該主題的指令檔。按一下是則執行指令檔並使該按鈕閃 爍顯示。 開啓檔案或設定此選項可自動開啓檔案或設定選項。

- 《詳細資訊... 連結至主題的詳細資訊。雖然不需要此資訊亦可完成學習單元,但它可讓您更詳細地瞭解主題。
- 第6什麼 ... 連結至關於步驟的詳細資訊,以及所提供方法的原因。不需要此資訊亦可完成學習單元。

列印學習單元

如果要列印線上學習單元,可按照以下步驟操作:

- 在學習單元導覽工具列上,按一下顯示 ♀
 線上學習單元的目錄即會顯示。
- 2 用右鍵按一下代表要列印之課程的手冊,然後從快顯功能表中選擇列印。 列印主題對話方塊將會出現。
- **3** 選擇列印選擇的標題與所有子主題,然後按一下確定。
- 4 對要列印的每一課重複此過程。

SolidWorks Simulation 產品線

雖然本課程重點是介紹使用 SolidWorks Simulation 模擬彈性本體的靜態線性,但整個產品線包含大量需要考慮的分析領域。下列各段落列出了 SolidWorks Simulation 套件及模組的全部產品。

靜態專題為靜態負載所載入的零件及組合件提供線性 應力分析工具。使用此專題類型要解答的常見問題有: 我的零件在正常工作負載下會斷裂嗎? 模型是否過度設計? 是否可以修改我的設計以增加安全係數?

挫曲專題分析在壓縮中載入的細薄零件之效能。使用 此專題類型要解答的常見問題有: 容器的支撐腿強度大到不會降伏,但是否強到在失去穩定性時不會倒塌? 是否可以修改我的設計以確保組合件中細薄零組件的穩定性?

頻率專題為自然模式及頻率提供分析工具。這在以靜 態及動態方式載入的設計或許多零組件中是必需的。 使用此專題類型要解答的常見問題有: 我的零件在正常工作負載下會共振嗎? 我的零組件的頻率特性是否適用於指定的應用? 是否可以修改我的設計以改善頻率特性?

熱專題為經由傳導、對流及輻射進行的熱傳遞提供 分析工具。使用此專題類型要解答的常見問題有: 溫度變化是否會影響我的模型? 我的模型在溫度波動的環境下如何工作? 我的模型冷卻或過熱需要多長時間? 溫度變化是否會導致我的模型膨脹? 溫度變化所產生的應力是否會導致我的產品失效 (靜態專題與熱專題結合用於解答此問題)?

落下測試專題用於分析運動零件或組合件撞擊障礙物的應力。使用此專題類型要解答的常見問題有: 如果我的產品在運輸或落下時處理不當會發生什麼 情況?

我的產品落在硬木表面、地毯或混凝土上時分別有 何反應?

最佳化專題適用於根據一組選定的準則(例如最大應 力、重量、最佳頻率等)改善(最佳化)您的最初設計。 使用此專題類型要解答的常見問題有: 是否可以在保持設計意圖的同時變更我的模型形狀? 是否可以在不損害效能強度的情況下使我的設計變得更輕、 更小、更便宜?

疲勞專題分析長期負載的零件及組合件的阻力。使用 此專題類型要解答的常見問題有: 是否可以準確預估我的產品的使用期限? 修改目前的設計是否有助於延長產品的使用期限? 我的模型在長期遇到波動的力或溫度時是否安全? 重新設計我的模型是否有助於最小化波動的力或溫度 所造成之損害?

非線性專題爲遇到繁重負載和/或大變形的零件及組合件提供應力分析工具。使用此專題類型要解答的常見問題有: 橡膠(例如 o 形圈)或泡沫製成的零件在指定負載下效能 是否良好?

我的模型在正常工作條件下是否出現過度彎曲?

動態專題分析所受負載隨時間而變化的物件。典型的範例包 括受到震動的汽車零組件、承受振動負載的渦輪機、以隨機 方式承受負載的飛機零組件等。提供線性(少量結構變形、 基本材料模型)及非線性(大量結構變形、嚴重負載與進階 材料)。使用此專題類型要解答的常見問題有: 當汽車遇到路面上的大窩穴所導致的震動負載時,我的零組 件設計安全嗎?它在這種情況下會產生多大程度的變形?

Motion Simulation 可讓使用者分析機械的運動學及動態行為。 接合及慣性力隨後可以轉換為 SolidWorks Simulation 專題以 繼續應力分析。使用此模數要解答的常見問題有: 我的設計的馬達或傳動裝置的正確規格是多少? 聯接、齒輪或閂鎖機制的設計是最佳的嗎? 機械零組件的位移、速度及加速度是多少? 機械是高效的嗎?是否可以改善?

複合模數可讓使用者模擬由層壓複合材料製造的結構。 使用此模數要解答的常見問題有: 複合模型在指定的負載下是否會失效? 使用複合材料能否讓結構更輕而不損害其強度及安全性? 層壓複合材料會分離嗎?

第1課:SolidWorks Simulation 的基本功能

完成本課程後,您將可以瞭解 SolidWorks Simulation 的基本功能,並對下列組合件執行靜態分析。

主動學習練習 - 執行靜態分析

使用 SolidWorks Simulation 對右側所示的 Spider.SLDASM 組合件進行靜態分析。

以下提供逐步指示說明。

建立 SimulationTemp 目錄

我們建議您將 SolidWorks Simulation Education Examples 儲存在暫存目錄中,以儲存原始副本以供重複使用。

- 1 在 SolidWorks Simulation 安裝目錄的 Examples 資料夾中建立一個名為 SimulationTemp 的暫存目錄。
- 2 將 SolidWorks Simulation Education Examples 目錄複製到 SimulationTemp 目錄中。

開啓 Spider.SLDASM 文件

- 按一下標準工具列上的
 開啓 ≥ 。開啓對話方塊
 會出現。
- 2 導覽至 SolidWorks Simulation 安裝目錄 中的 SimulationTemp 資料夾。
- 3 選擇 Spider.SLDASM
- 4 按一下開啓。

如果 SolidWorks Simulation 已正確 File Edit View Insert Tools Simulation 安裝, SolidWorks Simulation 功能 表會顯示於 SolidWorks 的功能表 列上。如果未正確安裝:

- Window SolidWorks Simulation 功能表
- 1 按一下工具、附加。 附加對話方塊會出現。
- 2 勾選 SolidWorks Simulation 旁邊的核取方塊。 如果 SolidWorks Simulation 未在清單中,則需安裝 SolidWorks Simulation。
- 3 按一下確定。

Simulation 功能表會出現在 SolidWorks 功能表列上。

設定分析單位

在開始本課程之前,我們將會先設 定分析單位。

- 1 在 SolidWorks 功能表列上,按 一下 Simulation、選項。
- 2 按一下預設選項標籤。
- 3 選擇 SI (MKS) 作為單位系統。
- 4 分別從長度/位移和壓力/應力欄 位中選擇 mm 和 N/mm^2(MPa)。
- 5 按一下確定。

stem Options Default Options		
Units Load/Fature Load/Fature Load/Fature Polot Polot Default Plots Default Plots Plot2 Plot2 Plot3 Plot4 Pl	Unit system SI (MKS) English (JPS) Units Length/Displacement: Temperature: Angular velocity: Pressure/Stress:	mm Kelvin • rad/sec • N/mm*2Mi •

步驟1:建立專題

執行分析的第一個步驟是建立專題。

- 在螢幕頂部的 SolidWorks 功能表中按一下 Simulation、專題。
 專題 PropertyManager 會出現。
- 2 在名稱之下,輸入 My First Study。
- 3 在類型之下,選擇靜態。
- 4 按一下確定。

SolidWorks Simulation 會在 FeatureManager (特徵功能表) 下方建立一個 Simulation 專題樹。

💐 My First Study (-Default-)
🚊 🧐 Parts
🫅 hub-1
- 🛅 shaft-1
i spider-1
Connections
🕀 🖶 Component Contacts
 Fixtures
External Loads
Mesh

亦會在視窗底部建立一個標籤,用於在多個專題與 Model Model

步驟2:指定材料

所有組合件零件都是採用合金鋼。

指定合金鋼材料至所有零組件。

注意:合金鋼的機械和物理屬性會出現在右側表格中。

- 3 按一下套用。
- 4 關閉材料視窗。

合金鋼已指定至所有零件,而且在各零組件圖示上會出 現勾選標記。請注意,零組件名稱旁會出現指定的材料 名稱。

步驟3:套用固定物

我們會修正3個孔。

- 1 使用方向鍵來旋轉組合件,如圖所示。
- 2 在 Simulation 專題樹狀結構中,用右鍵按一下固定物資料夾,然後按一下固定幾何。
 固定物 PropertyManager 出現。
- 3 確定類型設定為固定幾何。
- 4 在圖面中,按一下3個鑽孔的面,如下圖所示。
 面 <1>、面 <2> 和面 <3> 會出現在固定物的面、
 邊線、頂點方塊中。
- 5 按一下 🖌 🛛

固定物將會套用,而且其符號會出現在選取的面上。

同時,Fixed-1項目會出現在 Simulation 專題 樹狀結構中的固定物資料夾中。可以隨時修改 固定物的名稱。

步驟4:套用負載

我們會對面垂直套用 2250 N (505.82 lbf) 的作用力,如圖所示。

- 1 按一下圖面頂端的**縮放至區域** 圖示,然後放大軸的 錐形部分。
- 2 在 SolidWorks Simulation 管理員樹狀結構中,用右鍵按 一下外部負載資料夾,然後選擇力。

力/扭矩 Property Manager 出現。

- 3 在圖面中,選取圖形中所示的面。
 面 <1> 會出現在正向力的面及薄殼邊線清單方塊中。
- 4 確保將正向選作方向。
- 5 確定單位設定為 SI。
- 6 在**力值** 上 方塊中, 輸入 2250。
- 7 按一下 🖌。

SolidWorks Simulation 會套用力至選取面,且面 -1 項目會出現在外部負載資料 夾中。

隱藏固定物和負載符號

在 SolidWorks Simulation 管理樹狀結構中,用右鍵按一下固定物或外部負載資料 灰,然後按一下隱藏全部。

步驟 5:網格化組合件

網格化會將您的模型分割為較小的部分,稱為元素。根據模型的幾何尺寸,SolidWorks Simulation 建議使用預設的元素 大小(本例中為 4.564mm),並且視需要變更。

1 在 Simulation 專題樹狀結構中,用右鍵按一下網格圖示, 然後選擇**產生網格**。

網格 PropertyManager 出現。

- 2 選擇核取方塊以展開網格參數。
 確定已選擇了曲率化網格。
 保留程式建議的預設最大元素大小 ▲、最小元素大小 ▲、
 在圓中的最小元素數量 ④ 及元素大小成長率 ▲ 。
- 3 按一下確定開始網格化。

步驟 6:執行分析

在 Simulation 專題樹狀結構中,用右鍵按一下 My First Study 圖示,然後按一下執行以開始分析。

當分析完成時,SolidWorks Simulation 會自動建立儲存在結果資料夾中的預設結 果繪圖。

步驟7:顯示結果

von Mises 應力

- 按一下結果資料夾旁的加號 ■。
 所有預設繪圖圖示都會出現。
 - 注意:如果預設繪圖未出現,用右 鍵按一下結果資料夾,然後 選擇定義應力繪圖。設定 PropertyManager中的選項, 然後按一下✓。
- 2 連按兩下 Stress1 (-vonMises-) 以顯示應力繪圖。

注意: 顯示表示繪圖中最小值與最大值的註解,請連按兩下圖例然後核取 **顯示最小註記和顯示最大註記**核取方塊。然後按一下 **《**。

產生繪圖動畫

- 1 用右鍵按一下 Stress1 (-vonMises-),然後按一下產生動畫。
 動畫 PropertyManager 出現,而且動畫會自動開始。
- 2 按一下停止按鈕 以停止動畫。 必須停止動畫才可將 AVI 檔案儲存到磁碟中。
- 4 按一下 ▶ 以播放動畫。
 動畫會在圖面中播放。
- 5 按一下 🔳 以停止動畫。
- 6 按一下 ✔ 以關閉動畫 PropertyManager。

Animation	?
🗸 🗙	
Basics	~
5	A T
50	
Save as AVI file	~
Options	
C:\Program Files\Soli	
View with Media playe	r

檢視合位移

連按兩下 Displacement1 (-Res disp-) 圖示以顯示合位移繪圖。

此設計是否安全?

安全係數精靈可協助您回答這個問題。我們將使用此精靈來估計模型中各點的安全係數。在此程序中,您必須選擇生產失敗準則。

- 1 用右鍵按一下結果資料夾並選擇定義安全係數繪圖。 安全係數精顯步驟3之1 PropertyManager 出現。
- 2 在準則 皆 之下,按一下最大 von Mises 應力。
 - **注意**: 有幾種生產準則可用。von Mises 準則通常可用來 檢查延展材料的生產失敗情況。

- 3 按一下 ③ 下一步。
 安全係數精靈步驟 3 之 2 PropertyManager 出現。
 4 設定單位 頁 爲 N/mm^2 (MPa)。
- 5 在**設定應力範圍至**之下,選擇降伏強度。
 - **注意**: 當材料降伏時,將會以較快的速率持續以塑造方 式變形。在極端的情況下,即使負載未增加,也 會持續變形。
- 6 按一下 🕄 下一步。

安全係數精靈步驟 3 之 3 Property Manager 出現。

- 7 選擇低於安全係數的區域,然後輸入1。
- 8 按一下 ✔ 以產生繪圖。

隆 Factor of Safety 💦 ?
🗸 🗙 🕞 🕄
Step 2 of 3
► N/mm^2 (MPa) ▼
Set stress limit to
Yield strength
O Ultimate strength
O User defined
1
Multiplication factor
1
Beam Results:
Show combined stress on Beams
Shell Results:
🔗 Minimum 👻
Material involved
Alloy Steel
Yield strength: 620.422 N/mm^2 (MPa) Ultimate strength: 723.826 N/mm^2 (MPa)

檢查模型並檢視是否有紅色的不安全區域。如果繪圖中沒有紅色區域,表示所有位置都是安全的。

此設計的安全程度爲何?

- 用右鍵按一下結果資料夾並選擇 定義安全係數繪圖。
 安全係數精靈步驟3之1
 PropertyManager 出現。
- 在準則清單之下,選擇最大 von Mises 應力。
- 3 按一下下一步。
 安全係數精靈步驟 3 之 2
 PropertyManager 出現。

4 按一下下一步。

安全係數精靈步驟 3 之 3 Property Manager 出現。

- 5 在**繪圖結果**之下,按一下**安全係數分佈**。
- 6 按一下 🖌 🛛

產生的繪圖顯示安全係數分佈。最小安全係數約為 5.98。

注意:位置的安全係數為 1.0 表示材料剛剛開始彎曲變形。例如,安全係數 2.0 表示該位置的設計安全,且如果將負載加倍,材料將會開始彎曲變形。 由於模型某些區域遇到的應力很小,因此安全係數的最大值

很高(大於 1,800,000)。為使繪圖更具意義,我們會將圖例 的最大值變更為 100。

- 7 連按兩下該圖例,按一下已定義,然後 在最大值欄位中輸入 100。
- 8 按一下 🗸 顯示修改後的繪圖。

儲存所有產生的繪圖

- 1 用右鍵按一下 My First Study 圖示,然後按一下儲存所有的繪圖為 JPEG 檔案。 瀏覽資料夾視窗會出現。
- 2 瀏覽至您要儲存所有結果繪圖的目錄。
- 3 按一下**確定**。

產生專題報告

報告公用程式可協助您快速且系統化的將專題製成文件。程式將產生 Word 文件形式的結構化報告,其中說明與專題相關的所有方面。

在螢幕頂部的 SolidWorks 功能表中按一下 Simulation、報告。
 報告選項對話方塊會出現。

報告部分可讓您選擇將要在產生的報告 中包含的部分。使用每個部分旁邊的核 取方塊將其包含在報告中或從中排除。

- 2 可以自訂每個報告區段。例如,選擇報告部分下的說明部分,然後在部份屬性欄位中鍵入任何文字。 其餘部份可採用相同的方式自訂。
- 3 設計人員與公司名稱、標誌及其他所有 權資訊在頁首資訊部份輸入。 請注意,標誌檔可以接受的格式為 JPEG 檔案 (*.jpg)、GIF 檔案 (*.gif) 或點 陣圖檔案 (*.bmp)。
- 4 在報告發佈選項下,指定用於儲存 Word 文件的報告路徑,並核取發佈時顯示報告 核取方塊。

eport Options
Current report format: Static Study Format Report sections: Section properties
V Description Description: V Assumptions Spider simulation V Model Information Sider simulation V Junts E V Material Properties E V Loads and Fixtures E Connector Definitions E V Contact Information Y Sensor Details
Header information Header information Designer: John Brown Company: My corporation URL: Logo: Address:
Phone: Fax: Report publish options
Report path: C:\Program Files\SolidWorks 2011\SolidWorks\cosmosworks\Exa Document name: spider-My First Study-1 Image: Show report on publish
Publish Apply Cancel Help

5 按一下發佈。

報告會在您的 Word 文件中開啓。要完成報告,請按需要編輯 Word 文件。

此外,程式會在 SolidWorks Simulation 管理員樹狀結構的報告資料夾中建立一個圖示 📔。

若要編輯報告的任何區段,用右鍵按一下報告圖示,然後按一下編輯定義。修改該區段,然後按一下確定以取代現有的報告。

步驟 8:儲存工作然後結束 SolidWorks

- 1 按一下標準工具列上的 🔜 ,或依序按一下檔案、儲存。
- 2 依序按一下主功能表上的檔案,結束。

5 分鐘評量

1 如何啓動 SolidWorks Simulation 階段作業?_____ 2 如果 SolidWorks Simulation 功能表未出現在 SolidWorks 功能表列上,該怎麼辦? 3 SolidWorks Simulation 可分析的文件類型有哪些? 4 什麼是分析?_____ 5 分析有何重要性? 6 什麼是分析專題? 7 SolidWorks Simulation 可執行的分析類型有哪些? 8 什麼是靜態分析計算? _____ **9** 什麼是應力? **10** 執行分析的主要步驟有哪些?_____ 11 要如何變更零件的材料? 12 設計檢查精靈會在某些位置顯示安全係數為 0.8。此設計是否安全 ?

專案 — 由於端力造成樑柱的撓曲

某些簡單問題會有精確解答。其中一個問題是在端點施力的樑負載,如圖所示。我們使用 SolidWorks Simulation 來解決此問題並將結果與精確解答做比較。

工作

- 開啓位於 SolidWorks Simulation 安裝目 錄中 Examples 資料夾的 Front_Cantilever.sldprt 檔案。
- 2 測量懸臂的寬度、高度和長度。
- 3 以不同名稱儲存零件。
- 4 建立靜態專題。
- 5 指定合金鋼至零件。彈性模數的值為多少 psi?
 - <u>答案:</u>
- 6 固定懸臂的一個端面。
- 7 套用 500 N 向下作用力至另一個端面的 上緣。
- 8 網格化零件並執行分析。
- 9 產生 Y 方向的位移繪圖。懸臂自由端的最大 Y 方向位移為何?
 答案:
- 10 使用以下公式計算自由端的理論垂直位移:

$$UY_{Theory} = \frac{4FL^3}{Ewh^3}$$

其中F為力,L為橫樑長度,E為彈性模數,w和h分別為橫樑的寬度和高度。 答案:_____

11 使用以下公式來計算垂直位移中的誤差:

$$ErrorPercentage = \left(\frac{UY_{Theory} - UY_{COSMOS}}{UY_{Theory}}\right)100$$

<u>答案:______</u>

第1課:詞彙測驗卷

姓名:	班級:	日期:
在以下空格中填入適當的字詞。		
1 在 SolidWorks 中建立模型、製造原型	」,然後測試原型[的過程稱爲:
2 一種 假設的分析類型、材料、固定物	和負載情境稱爲	:
3 SolidWorks Simulation 用來執行分析的	的方法:	
4 計算位移、應變和應力的專題類型稱	爲:	-
5 將模型細分成小塊的過程稱為:		
6 在網格化期間建立的簡單形狀小塊稱	爲:	-
7 元素彼此共用的點稱為:		
8 作用在面上的力除以該面積稱為:		
9 由於軸向壓縮負載造成細長設計突然	倒塌稱為:	
10 用來計算設計可能達到的熱度的專題	稱爲:	
11 提供應力狀態的一般描述的數值稱爲	, :	_
12 作用在平面上的正向應力以抵銷剪應	力稱爲:	
13 使本體易於振動的頻率稱為:		-
14 可協助您避免共振的分析類型稱為:		

第1課:測驗

姓名: _____日期:_____班級: _____日期:_____

指示:對各項問題寫入正確的答案,或在空格填入正確的答案。

- 1 您可建立專題來測試您的設計。什麼是專題? ______
- 2 SolidWorks Simulation 可執行的分析類型有哪些? ______
- 3 若在取得專題結果後變更了材料、負載及/或固定物,是否需要再次網格化?
- 4 若在網格化專題後變更了幾何,是否需要再次網格化模型? ______
- 5 如何建立新的靜態專題?_____
- 6 什麼是網格化? _____
- 7 在組合件中,您預期在實體資料夾中會看到幾個圖示? _____

第1課:SolidWorks Simulation 的基本功能

第2課: SolidWorks Simulation 中的 Adaptive 方法

完成本課程後,您將可以 (a) 使用 Adaptive 方法來改善結果的精確度和 (b) 套用對稱 固定物來分析四分之一原始模型。

請計算在中央有 1 英吋孔徑的 500mm x 500mm x 25mm (19.68 英吋 x 19.68 英吋 x 0.98 英吋) 方板之應力。方板承受 1 MPa (145.04 psi) 的拉伸壓力。

請比較中央孔的應力集中與已知理論結果。

主動學習練習 — 第1部分

使用 SolidWorks Simulation 對右側所示的 Plate-with-hole.SLDPRT 零件進行靜態分析。

請計算在中央有 1 英时孔徑的 500mm x 500mm x 25mm (19.68 英时 x 19.68 英时 x 0.98 英时)方板之應力。方板 承受 1 MPa (145.04 psi)的拉伸壓力。

請比較中央孔的應力集中與已知理論結果。

以下提供逐步指示說明。

建立 Simulationtemp 目錄

我們建議您將 SolidWorks Simulation Education Examples 儲存在暫存目錄中,以儲存原始副本以供重複使用。

- 1 在 SolidWorks Simulation 安裝目錄的 Examples 資料夾中建立一個名為 Simulationtemp 的暫存目錄。
- 2 將 SolidWorks Simulation Education Examples 目錄複製到 Simulationtemp 目錄中。

開啓 Plate-with-hole.SLDPRT 文件

- 1 按一下標準工具列上的開格 👌 。開格對話方塊會出現。
- 2 導覽至 SolidWorks Simulation 安裝目錄中的 Simulationtemp 資料夾。
- 3 選擇 Plate-with-hole.SLDPRT。
- 4 按一下開啓。

Plate-with-hole.SLDPRT 零件開啓。

請注意,零件有兩種模型組態:(a) Quarter plate,和(b)Whole plate。 請確定Whole plate模型組態為啓用狀態。

注意: 文件的模型組態會列於左側窗格上方的 Configuration Manager 標籤 之下。

2-2

檢查 SolidWorks Simulation 功能表

如果 SolidWorks Simulation 已附加, SolidWorks Simulation 功能表 會顯示於 SolidWorks 的功能表列 上。如果未附加:

SolidWorks Simulation 功能表

- 1 按一下工具、附加。 附加對話方塊會出現。
- 2 勾選 SolidWorks Simulation 旁邊的核取方塊。 如果 SolidWorks Simulation 未在清單中,則需安裝 SolidWorks Simulation。
- 3 按一下確定。

SolidWorks Simulation 功能表會出現在 SolidWorks 功能表列上。

設定分析單位

在開始本課程之前,我們將會先設定分析單位。

- 1 按一下 Simulation、選項。
- 2 按一下預設選項標籤。
- 3 在**單位系統**以及 mm 和 N/mm²(MPa) 中選擇 SI (MKS),分別作為長度與應力 的單位。
- 4 按一下 🖌 🛛

步驟1:建立專題

執行分析的第一個步驟是建立專題。

- 在螢幕頂部的 SolidWorks 功能表中按一下 Simulation、專題。
 專題 PropertyManager 會出現。
- **2** 在**名稱**之下,輸入 Whole plate。
- 3 在類型之下,選擇靜態。
- 4 按一下 🗹。

SolidWorks Simulation 會在 FeatureManager (特徵功能表)下方建立一個 Simulation 專題樹。

步驟2:指定材料

指定合金鋼

- 1 在 SolidWorks Simulation 管理員樹狀結構中,用 右鍵按一下 Platewith-hole 資料夾, 然後按一下套用材料至 所有本體。 材料對話方塊出現。
- 2 進行下列操作:
 - a) 展開 SolidWorks 材料資料庫資料夾。
 - b) 展開鋼類別。
 - c) 選擇合金鋼。

注意: 合金鋼的機械和物理屬性會出現在右側表格中。

3 按一下確定。

步驟3:套用固定物

套用固定物以防止平面外旋轉和自由本體運動。

按下 spacebar,然後在方向功能表中選擇
 *Trimetric。

模型方向如圖所示。

- 2 在 Simulation 專題樹狀結構中,用右鍵按一下 固定物資料夾,然後按一下進階固定物。
 固定物 PropertyManager 出現。
- 3 確定類型設定為使用參考幾何。
- 4 在圖面中,選取圖形中所示的8個邊線。
 邊線
 邊線
 32 到邊線
 82 會出現在固定物的面、邊線、頂點方塊中。
- 5 按一下方向的面、邊線、基準面、軸方塊,然後 在快顯 FeatureManager(特徵管理員)樹狀結 構中選擇平面 1。
- 6 在平移之下,選擇沿平面方向 2 🕅。

7 按一下 🖌 🛛

固定物將會套用,而且其符號會出現在選取的邊線上。 此外,固定物圖示 (Reference Geometry-1)會出現在固定物資料夾中。 同樣地,依照步驟 2 到 7 套用固定物至圖中所 示的垂直邊線集,以平面 1 的沿平面方向 1 限制 8 個邊線。

爲避免整體座標 Z 方向的模型位移,必須在頂點上定義如下圖所示的固定物。

1 在 SolidWorks Simulation 管理員樹狀結構中, 用右鍵按一下固定物資料夾,然後按一下進階 固定物。

固定物 PropertyManager 出現。

- 2 確定類型設定為使用參考幾何。
- 3 在圖面中,選取圖形中所示的頂點。 頂點 <1> 會出現在固定物的面、邊線、頂點方 塊中。
- 4 按一下方向的面、邊線、基準面、軸方塊,然後在快顯 FeatureManager(特徵管理員)樹狀結構中選擇平面 1。
- 5 在平移之下,選擇垂直於平面 💙。
- 6 按一下 🖌 🛛

步驟4:套用壓力

請朝垂直方向套用1MPa (145.04 psi)的壓力在面上,如圖 所示。

1 在 SolidWorks Simulation 管理員 樹狀結構中,用右鍵按一下外 部負載資料夾,然後選擇**壓力**。

壓力 PropertyManager 出現。

- 2 在**類型**之下,選擇**垂直於所** 選面。
- 3 在圖面中,選擇圖中所示的四 個面。 面<1> 到面<4>會出現在壓力

的面清單方塊中。

- 4 確定單位已設為 N/mm^2 (MPa)。
- 5 在**壓力値**方塊 <u>出</u>中,輸入1。
- 6 核取反轉方向方塊。
- 7 按一下 🖌 🛛

SolidWorks Simulation 會套用正向壓力至選取面,且壓力-1圖示 😃 會出現在外部負載資料夾中。

面 3

隱藏固定物和負載符號

在 SolidWorks Simulation 管理樹狀結構中,用右鍵按一下固定物或外部負載資料 灰,然後按一下**隱藏全部**。

步驟 5:將模型網格化並執行專題

網格化會將您的模型分割為較小的部分,稱為元素。根據模型的幾何尺寸, SolidWorks Simulation 建議使用預設的元素大小,並且視需要變更。

1 在 SolidWorks Simulation 管理員樹狀結構中,用右鍵按一下網格圖示,然後選擇 產生網格。

網格 PropertyManager 出現。

2 選擇核取方塊以展開網格參數。

確定已選擇了曲率化網格。

3 鍵入 50mm 作為最大元素大小 ♣, , 並接受其餘參數(最小元素大小 ♣, 、在圓中 的最小元素數量 ֎ 及元素大小成長率 🏰)的預設值。

4 核取選項之下的執行(求解)分析,然後按一下 🖌.

注意: 若要檢視網格繪圖,用右鍵按一下網格資料夾,然後選擇顯示網格

步驟 6: 顯示結果

在整體座標 X-方向上的正向應力。

- 1 用右鍵按一下結果資料夾 L 並選擇定義應力繪圖。
 應力繪圖 PropertyManager 出現。
- 2 在顯示之下
 - a) 在零組件欄位中選擇 SX: X 正向應力。
 - b) 在單位中選擇 N/mm² (MPa)。
- 3 按一下 🖌 🛛

顯示 X 方向的正向應力繪圖。 請注意孔周圍的應力集中。

步驟7:確認結果

含矩形橫截面和中央圓孔的方板之最大正向應力 σ_{max} 的計算公式如下:

其中:

D=方板寬度=500mm(19.69英吋)

r=孔徑=25mm (0.98 英吋)

t=方板厚度=25mm(0.98 英吋)

P=拉伸軸力=壓力*(**D***t)

最大正向應力的分析值為 σ_{max} = 3.0245 MPa (438.67 psi)。

SolidWorks Simulation 結果(不使用任何 Adaptive 方法) 為 SX = 2.416 MPa (350.41 psi)。

此結果與理論解的結果相差約 20.1%。您很快將會看見這個明顯的誤差可以歸於網格的粗糙程度。

主動學習練習 — 第2部分

在本課程的第二部分中,將藉由對稱固定物的協助來建立四分之一的方板模型。

注意: 對稱固定物僅可以用來分析部分模型。這個方法可節省大量的分析時間,尤其是當您在處理大型模型時。

對稱條件需要幾何、負載、材料屬性及固定物在對稱平面上均相等。

步驟1: 啓動新的模型組態

- 1 按一下 ConfigurationManager 標籤 🌇。
- 在 Configuration Manager 樹狀結構中, 連按兩下 Quarter plate 圖示。
 將會啓動 Quarter plate 模型組態。
 四分之一方板模型會出現在圖面中。
 - 注意: 若要存取與停用模型組態相關的專題, 用右鍵按一下該專題圖示,並選擇**啓動** SW 模型組態。

步驟 2:建立專題

您建立的新專題係根據 Quarter plate 模型組態。

- 在螢幕頂部的 SolidWorks 功能表中按一下 Simulation、專題。
 專題 PropertyManager 會出現。
- 2 在名稱之下,輸入 Quarter plate。
- 3 在類型之下,選擇靜態。
- 4 按一下 🖌 。

SolidWorks Simulation 將在螢幕底部的標籤 [Model Motion Study 1] Whole plate Wourter plate] 中為專題建立代表性的樹狀結構。

步驟3:指定材料

依照第1部分的步驟2所述程序執行,以指定合金鋼材料。

步驟4:套用固定物

在對稱面上套用固定物。

- 1 使用方向鍵來旋轉模型,如圖所示。
- 2 在 Simulation 專題樹狀結構中,用右鍵按 一下固定物資料夾,然後選擇進階固定物。 固定物 PropertyManager 出現。
- 3 將**類型**設定為對稱。
- 4 在圖面中,按一下圖中所示的面1和面2。
 面 <1> 及面 <2> 出現在**固定物的基準面**方 塊中。

5 按一下 ✓。 其次,拘束方板的上邊線,以防止於整體座標Z方向位移。

若要限制上邊線:

- 1 在 SolidWorks Simulation 管理員樹狀結構中,用右鍵按一下固定物資料夾,然後 選擇進階固定物。 設定類型為使用參考幾何。
- 2 在圖面中,按一下圖中所示的方板上邊線。
 邊線<1>會出現在固定物的面、邊線、頂點方塊中。
- 3 按一下方向的面、邊線、基準面、軸方塊,然後在快 顯 FeatureManager(特徵管理員)樹狀結構中選擇 平面 1。
- 4 在平移之下,選擇垂直於平面 ♥。請確定將其他兩個平移零組件停用。
- 5 按一下 🖌 •

在套用所有固定物之後,會有兩個項目:(對稱-1)和(參考幾何-1)會出現 在固定物資料夾中。

步驟 5: 套用壓力

請套用 1 MPa (145.04 psi) 的壓力,如下圖所示:

- 在 SolidWorks Simulation 管理員樹狀結構中, 用右鍵按一下外部負載,然後選擇壓力。
 壓力 PropertyManager 出現。
- 2 在**類型**之下,選擇**垂直於所選面**。
- 3 在圖面中,選擇圖形中所示的面。
- 4 面 <1> 會出現在壓力的面清單方塊。
- 5 設定單位 📘 爲 N/mm^2 (MPa)。
- 6 在**壓力値**方塊 <u>山</u>中,輸入1。
- 7 核取反轉方向方塊。
- 8 按一下 🖌 。

SolidWorks Simulation 會套用正向壓力至選取面,且壓力 -1 圖示 😃 會出現在 外部負載資料夾中。

步驟 6: 網格化模型和執行分析

依照第 2-7 頁第 1 部分的步驟 5 一網格化模型和執 行專題所述套用相同的網格設定。然後執行分析。 網格繪圖如圖所示。

步驟 7:檢視整體座標 X-方向上的正向應力

- 1 在 Simulation 專題樹狀結構中,用右鍵按一下結果 **回** 資料夾,並選擇定義應力 繪圖。
- 2 在應力繪圖 PropertyManager 中的顯示之下:
 - a) 選擇 SX:X 正向應力。
 - b) 在單位中選擇 N/mm^2 (MPa)。
- 3 在**變形形狀**之下選擇實際比例。
- 4 在**屬性**之下:
 - a) 選擇將繪圖與選用視角名稱的方位相關聯。
 - b) 從功能表中選擇*前視。

5 按一下 ✓。 在板子的實際變形形狀上便顯示出 X-方向上的正向應力。

步驟8:驗證結果

對於四分之一模型,最大正向 SX 應力為 2.217 MPa (321.55 psi)。此結果可以和 whole plate 的結果比較。

此結果與理論解的結果相差約36%。如同在本課程的第1部分中的結論中所提到, 您將會看見此誤差可以歸於計算網格的粗糙程度。您可以手動使用較小的元素大 小,或使用自動 Adaptive 方法來改善精確度。

在第3部分中,您將使用 h-Adaptive 方法來改善精確度。

主動學習練習 — 第3部分

在本練習的第3部分中,請套用 h-Adaptive 方法來解決 Quarter plate 模型組態的相同問題。

爲展示 h-Adaptive 方法的強大功能,首先,請使用較大的元素大小將模型網格化,然後觀察 h-Adaptive 方法如何變更網格大小以提升結果的準確性。

步驟1定義新專題

您可以透過複製前一專題來產生新專題。

1 用右鍵按一下螢幕底部的 Quarter plate 專題,然後選擇複製。

定義專題名稱對話方塊出現。

- 2 在專題名稱方塊中,鍵入 H-adaptive。
- 3 在使用的模型組態之下:選擇 Quarter plate。
- 4 按一下確定。

步驟 2 設定 h-Adaptive 參數

- 在 Simulation 專題樹狀結構中,用右鍵按一下 H-adaptive,然後選擇屬性。
- 2 在對話方塊中的選項標籤上,選擇求解器之下的 FFEPlus。
- 3 在自適性標籤上,於 Adaptive 方法之下,選擇 h-adaptive。
- 4 在 h-Adaptive 選項之下,執行下列動作:
 - a)將目標精度滑動桿移至 99%。
 - b) 設定最大循環數為 5。
 - c) 核取網格粗化。
- 5 按一下確定。

注意:	複製專題時,原始專題的所有
	資料夾皆會複製到新專題。只要
	新專題的屬性相同,您就不需要
	重新定義材料屬性、負載、固定
	物等。

%	
wer)	
ar le	ess
	nore
% 0111	
~ 011	

	Delete All Simulaton	Studies
	Create New Motion	Study
	Create New Simulati	on Study
	Create New Design S	itudy
] 👯 Quarter	r plate	
Define Study I	Name	×
Study Name :		
H-adaptive]
Configuration	to use:	_
Quarter plate	•	
ОК	Cancel	Help

Duplicate

Rename

步驟 3:將模型重新網格化並執行專題

- 在 SolidWorks Simulation 管理員樹狀結構中,用右鍵 按一下網格資料夾,然後選擇產生網格。
 接著會出現警告訊息,指出重新產生網格將會刪除專 題的結果。
- 2 按一下確定。

網格 PropertyManager 出現

- 3 鍵入 125mm(4.92 英时)作為最大元素大小 ♣, 並 接受其餘參數(最小元素大小 ♣, 在圓中的最小元素 數量 ֎ 及元素大小成長率 ♣)的預設値。
 使用此較大的整體元素大小値,是為了展示
 h-Adaptive 方法微調網格以取得精確的結果。
- 4 按一下 🖌。上面的影像會顯示最初的粗略網格。
- 5 用右鍵按一下 H-adaptive 圖示,然後選擇執行。

步驟4:檢視結果

套用 h-Adaptive 方法會縮小原始的網格大小。請注意在中央孔的位置,網格大小會從粗略網格(板邊界)平移至精細網格。

若要檢視轉換後的網格,用右鍵按一下網格圖示,並選擇**顯示網格**。

檢視整體座標 X- 方向上的正向應力

在 SolidWorks Simulation 管理員樹狀結構中,連按兩下結果資料夾 **回**中的應力 2 (X-正向)繪圖。

最大正向應力的分析值為 σ_{max}= 3.113 MPa (451.5) psi。

套用 h-Adaptive 方法的 SolidWorks Simulation 結果為 SX = 3.113 MPa, 與分析應用 程式的解答相當接近(大約誤差 2.9%)。

注意: 在專題屬性中設定的屬意精確度(在本例中為99%)並非意味產生的應 力會在1%的最大錯誤之內。在有限元素分析方法中,非應力的測量是 用來評估解決方案的精確度。但是可以將它包括成為自適應演算法以提 高網格品質,應力解決方案將變得更為精確。

步驟9:檢視收斂圖表

- 1 在 Simulation 專題樹狀結構中,用右鍵按一下結果 🖻 資料夾,並選擇定義 Adaptive 收歛圖表。
- 2 在 PropertyManager 中,核取所有選項,然後按一下 ✓。
 畫面顯示出所有核取數量的收斂圖表。

注意: 進一步改善解決方案的精確度,可以藉由起始後續的專題執行繼續 h-adaptivity 迭代。每個後續的專題執行都使用先前執行的最後迭代中的 最後網格作為新執行的最初網格。重新執行 H-adaptive 專題以便再試 一次。

5 分鐘評量

- 1 如果修改材料、負載或固定物,結果會變為無效,但是網格卻不會,這是為 什麼?
- 2 變更尺寸是否會使目前的網格無效?
- 3 要如何啓動模型組態?
- 4 什麼是剛性體運動?
- 5 什麼是 h- Adaptive 方法,何時會用到它?
- 6 與使用網格控制相比,使用 h-Adaptive 改善精度的優點為何?
- 7 在 p-Adaptive 方法的迭代中,元素數量是否會改變?

專案 — 使用殼外網格模型化四分之一方板

使用殼外網格來解決四分之一方板模型。請套用網格控制來改善結果的精確度。

工作

- 1 在螢幕頂部的 SolidWorks 主功能表中按一下插入、曲面、中面。
- 2 選擇板的前後曲面,如圖所示。
- 3 按一下確定。
- 4 建立一個名為 Shells-quarter 的靜態專題。
- 5 展開 Plate-with-hole 資料夾,用右鍵按一下 實體並選擇從分析中排除。
- 6 定義 25 mm (薄殻公式) 殼。若要這麼做:
 - a) 在 Simulation 專題樹狀結構中,用右鍵按一下 Plate-with-hole 資料夾中的 SurfaceBody,並選擇**編輯定義**。
 - b) 在薄殻定義 PropertyManager 中,選擇 mm 然後
 輸入 25 mm 為薄殻厚度。
 - c) 按一下 🗸。
- 7 指定合金鋼至薄殼。若要這麼做:
 - a) 用右鍵按一下 Plate-with-hole 資料夾,然後選擇套用材料至所有本體。
 - b) 展開 SolidWorks 材料資料庫,然後從鋼類別中選擇合金鋼。
 - c) 選擇**套用**再選擇關閉。
- 8 套用對稱固定物至圖中所示的兩邊線。

注意: 對曲面薄殼網格而言,拘束其中一個邊線即可,毋需拘束面。

- a) 用右鍵按一下固定物資料夾,然後選擇進階固定物。
- b) 在**固定物的面、邊線、頂點**欄位中選擇如圖所示的 邊線。
- c) 在方向的面、邊線、基準面、軸欄位中,選擇面 3。
- d) 拘束垂直於平面平移和沿平面方向 1 和沿平面方向 2 旋轉。
- e) 按一下 🖌 🛛

9 使用相同程序將對稱固定物套用至如圖中顯示的 其他邊線。這次在方向的面、邊線、基準面、軸欄 位中使用面 2 功能。

10 將 1 N/mm^2 (MPa) 壓力套用至如圖所示的邊線。

- a) 用右鍵按一下外部負載資料夾,然後選擇**壓力**。
- b) 在類型之下,選擇使用參考幾何。
- c) 在**壓力的面、邊線**欄位中選擇如圖所示的垂直邊線。
- d) 在**方向的面、邊線、基準面、軸欄**位中選擇如圖所 示的邊線。
- e) 在**壓力值**對話方塊中指定 1 N/mm² (MPa)。
- f) 按一下 🖌。
- **11** 套用網格控制至圖中所示的邊線。使用較小的元素 大小可改善精確度。
 - a) 在 Simulation 專題樹狀結構中,用右鍵按一下 網格圖示,然後選擇**套用網格控制。網格控制** PropertyManager 出現。
 - b) 選擇圖中顯示的孔邊線。
 - c) 按一下 🖌 °

12 網格化零件並執行分析。

- a) 在 Simulation 專題樹狀結構中,用右鍵按一下網格圖示,然後選擇**套用網格** 控制。網格控制 PropertyManager 出現。
- b) 選擇圖中顯示的孔邊線。
- c) 按一下 🖌 °
- 13 產生 X 方向的應力繪圖。什麼是最大 SX 應力?

<u>答案:</u>_

14 使用以下公式來計算 SX 正向應力中的誤差:

$$\text{ErrorPercentage} = \left(\frac{\text{SX}_{\text{Theory}} - \text{SX}_{\text{SIMULATION}}}{\text{SX}_{\text{Theory}}}\right) 100$$

答案:_____

第2課:詞彙測驗卷

姓名: ______ 田叔: ______ 田叔: ______

在以下空格中填入適當的字詞。

- 1 自動微調應力集中區域的網格以改善應力結果的方法:
- 2 增加多項式階數以改善應力結果的方法:
- 3 四面體元素的節點的自由度類型有:
- 4 薄殼元素的節點的自由度類型有:
- 5 在所有方向的均相同的材料:
- 6 適用於龐大模型的網格類型:
- 7 適用於細薄模型的網格類型:
- 8 適用於包含細薄和龐大零件的模型之網格類型:

第2課:測驗

姓名: ______ 田叔: ______ 田叔: ______

指示:對各項問題寫入正確的答案,或在空格填入正確的答案。

1 粗略和精細品質薄殼元素中有幾個節點?

2 變更薄殼厚度後是否需要重新網格化?

3 什麼是 Adaptive 方法,其公式的基本概念為何?

4 在專題中使用多個模型組態有何優點?

5 如何快速建立與現有專題只有些許差異的新專題?

6 當無法使用 Adaptive 方法時,要如何取得精確的結果?

7 程式計算應力、位移和應變的順序為何?

8 在 Adaptive 解答中,何者的量值收斂速度會比較快:位移或應力?

第2課: SolidWorks Simulation 中的 Adaptive 方法