

Serie Tecnología y diseño de ingeniería

Introducción a las aplicaciones de análisis de tensión con SolidWorks Simulation, Guía del estudiante

Dassault Systèmes SolidWorks Corporation 300 Baker Avenue Concord, Massachusetts 01742 EE. UU. Teléfono: +1-800-693-9000 Fuera de EE. UU.: +1-978-371-5011 Fax: +1-978-371-7303 Correo electrónico: info@solidworks.com Web: http://www.solidworks.com/education © 1995-2010, Dassault Systèmes SolidWorks Corporation, una empresa de Dassault Systèmes S.A., 300 Baker Avenue, Concord, Massachusetts 01742 EE. UU. Reservados todos los derechos.

La información y el software especificados en este documento están sujetos a cambio sin previo aviso y no son responsabilidad de Dassault Systèmes SolidWorks Corporation (DS SolidWorks).

No se puede reproducir ni transmitir ningún material en ninguna forma ni a través de ningún medio, electrónico o manual, con ningún propósito sin el consentimiento expreso por escrito de DS SolidWorks.

El software descrito en este documento se proporciona con una licencia y se puede usar o copiar únicamente según los términos de la licencia. Todas las garantías ofrecidas por DS SolidWorks con respecto al software y a la documentación se establecen en el contrato de licencia y nada de lo que establezca o implique este documento o su contenido se considerará o estimará como una modificación o enmienda de las condiciones, incluidas las garantías, de dicho contrato de licencia.

Avisos de patentes

El software CAD mecánico en 3D SolidWorks® está protegido por las patentes de EE. UU. 5.815.154; 6.219.049; 6.219.055; 6.611.725; 6.844.877; 6.898.560; 6.906.712; 7.079.990; 7.477.262; 7.558.705; 7.571.079; 7.590.497; 7.643.027; 7.672.822; 7.688.318; 7.694.238 y 7.853.940, y por las patentes de otros países (por ejemplo, EP 1.116.190 y JP 3.517.643).

El software e Drawings
® está protegido por las patentes de EE. UU. 7.184.044 y 7.502.027 y por la patente canadi
ense 2.318.706.

Patentes en EE. UU. y en otros países pendientes de aprobación.

Marcas comerciales y nombres de productos para los productos y servicios SolidWorks

SolidWorks, 3D PartStream.NET, 3D ContentCentral, SolidWorks eDrawings y el logotipo de SolidWorks eDrawings son marcas comerciales registradas y FeatureManager es una marca comercial registrada conjunta de DS SolidWorks.

CircuitWorks, Feature Palette, FloXpress, PhotoWorks, TolAnalyst y XchangeWorks son marcas comerciales de DS SolidWorks.

FeatureWorks es una marca comercial registrada de Geometric Software Solutions Ltd.

SolidWorks 2011, SolidWorks Enterprise PDM, SolidWorks Simulation, SolidWorks Flow Simulation y eDrawings Professional son nombres de productos de DS SolidWorks.

Otras marcas o nombres de productos son marcas comerciales o marcas comerciales registradas de sus respectivos propietarios.

SOFTWARE COMERCIAL INFORMÁTICO - PATENTADO

Derechos restringidos del gobierno de Estados Unidos El uso, la duplicación o la divulgación por parte del gobierno está sujeta a las restricciones establecidas en FAR 52.227-19 (Software informático comercial - Derechos restringidos), DFARS 252.227-7202 (Software informático comercial y Documentación de software informático comercial) y en este Acuerdo, según corresponda. Contratante/Fabricante:

Dassault Systèmes SolidWorks Corporation, 300 Baker Avenue, Concord, Massachusetts 01742, EE. UU.

Avisos de copyright para los productos SolidWorks Standard, Premium, Professional y Education

Partes de este software © 1986-2010 Siemens Product Lifecycle Management Software Inc. Reservados todos los derechos.

Partes de este software $\ensuremath{\mathbb{C}}$ 1986-2010 Siemens Industry Software Limited. Reservados todos los derechos.

Partes de este software © 1998-2010 Geometric Ltd.

Partes de este software \bigcirc 1996-2010 Microsoft Corporation. Reservados todos los derechos.

Partes de este software incorporan PhysX[™] by NVIDIA 2006 - 2010.

Partes de este software ${\ensuremath{\mathbb C}}$ 2001 - 2010 Luxology, Inc. Reservados todos los derechos, patentes pendientes.

Partes de este software © 2007 - 2010 DriveWorks Ltd.

Copyright 1984-2010 Adobe Systems Inc. y sus concedentes de licencias. Reservados todos los derechos. Protegido por las patentes estadounidenses 5.929.866; 5.943.063; 6.289.364; 6.563.502; 6.639.593; 6.754.382; patentes pendientes.

Adobe, el logotipo de Adobe, Acrobat, el logotipo de Adobe PDF, Distiller y Reader son marcas comerciales registradas o marcas comerciales de Adobe Systems Inc. en los Estados Unidos y en otros países.

Para obtener más información acerca del copyright, consulte Ayuda > Acerca de SolidWorks.

Avisos de copyright para los productos de SolidWorks Simulation

Partes de este software © 2008 Solversoft Corporation. PCGLSS © 1992-2007 Computational Applications and System Integration, Inc. Reservados todos los derechos.

Avisos de copyright para el producto Enterprise PDM

Outside In® Viewer Technology, © Copyright 1992-2010, Oracle © Copyright 1995-2010, Oracle. Reservados todos los derechos. Partes de este software © 1996-2010 Microsoft Corporation. Reservados todos los derechos.

Avisos de copyright para los productos de eDrawings

Partes de este software © 2000-2010 Tech Soft 3D.

Partes de este software $\ensuremath{\mathbb{C}}$ 1995-1998 Jean-Loup Gailly and Mark Adler.

Partes de este software © 1998-2001 3Dconnexion.

Partes de este software $\mathbb C$ 1998-2010 Open Design Alliance. Reservados todos los derechos.

Partes de este software © 1995-2009 Spatial Corporation.

Este software está basado en parte en el trabajo del Independent JPEG Group

1

Acerca de este curso

Introducción a las aplicaciones de análisis de tensión con SolidWorks Simulation y sus materiales complementarios están diseñados para ayudarle en el aprendizaje de SolidWorks Simulation en el ámbito académico.

Tutoriales en línea

Introducción a las aplicaciones de análisis de tensión con SolidWorks Simulation es un recurso adicional y se complementa con los Tutoriales en línea de SolidWorks Simulation.

Acceso a los tutoriales

Para iniciar los tutoriales en línea, haga clic en Help, SolidWorks Tutorials, All SolidWorks Tutorials (Ayuda, Tutoriales de SolidWorks, Todos los tutoriales de SolidWorks). Se reajusta el tamaño de la ventana de SolidWorks y se muestra una segunda ventana junto a ella con una lista de los tutoriales disponibles. Conforme mueve el puntero sobre los enlaces, se mostrará una imagen del tutorial en la parte inferior de la ventana. Haga clic en el enlace deseado para iniciar el tutorial.

Convenciones

Establezca la resolución de pantalla en 1280x1024 para visualizar correctamente los tutoriales.

Los iconos siguientes aparecen en los tutoriales:

Next Mueve a la pantalla siguiente del tutorial.

Representa una nota o consejo. No es un enlace.

La información se encuentra a la derecha del

icono. Las notas y los consejos ofrecen pasos que ahorran tiempo y sugerencias útiles.

- Puede hacer clic en la mayoría de botones de la barra de herramientas que aparecen en las lecciones para mostrar el botón de SolidWorks correspondiente. La primera vez que haga clic en el botón, se mostrará el mensaje de control de ActiveX: Un control ActiveX de esta página podría no ser seguro al interactuar_con otras partes de la página. ¿Desea permitir esta interacción? Esta es una medida de precaución estándar. Los controles ActiveX de los tutoriales en línea <u>no</u> dañarán su sistema. Si hace clic en No, los scripts se deshabilitan para ese tema. Haga clic en Sí para ejecutar los scripts y mostrar el botón.
- Open File (Abrir archivo) o Set this option (Establecer esta opción) abre el archivo o establece la opción automáticamente.
 - **Video example (Ejemplo en vídeo)** muestra un vídeo sobre este paso.
- A closer look at... (Más detalles) enlaza a más información sobre un tema. Aunque no es necesario para completar el tutorial, ofrece más detalles sobre el tema.
- Why did I... (¿Por qué debería...?) enlaza a más información acerca de un procedimiento y los motivos de un método dado. Esta información no es necesaria para completar el tutorial.

Impresión de los tutoriales

Si lo desea, puede imprimir los tutoriales en línea siguiendo estos pasos:

1 En la barra de herramientas de navegación del tutorial, haga clic en

Show (Mostrar) 4.

De esta forma se muestra un índice de los tutoriales en línea.

2 Haga clic con el botón derecho del ratón en el libro que representa la lección que desea imprimir y seleccione **Print (Imprimir)** en el menú de accesos directos.

Aparece el cuadro de diálogo Print Topics (Imprimir temas).

- 3 Seleccione Print the selected heading and all subtopics (Imprimir el título seleccionado y todos los subtemas), y haga clic en OK (Aceptar).
- 4 Repita este proceso para cada lección que desee imprimir.

Línea de productos de SolidWorks Simulation

Aunque este curso se centra en la introducción a la simulación lineal estática de cuerpos rígidos con SolidWorks Simulation, la línea de productos completa cubre una amplia gama de áreas de análisis a tener en cuenta. Los párrafos siguientes enumeran la oferta completa de los paquetes y módulos de SolidWorks Simulation.

Los estudios estáticos proporcionan herramientas para el análisis de tensión lineal de piezas y ensamblajes cargados con cargas estáticas. Las preguntas típicas que se responderán con este tipo de estudio son:

¿Mi pieza se romperá bajo cargas funcionales normales? ¿El modelo está "diseñado en exceso"?

¿Mi diseño se puede modificar para aumentar el factor de seguridad?

Los estudios de pandeo analizan el rendimiento de las piezas delgadas cargadas en compresión. Las preguntas típicas que se responderán con este tipo de estudio son:

Las patas de mi recipiente son lo suficientemente fuertes para que no se venza su límite elástico, pero, ¿lo son como para no colapsar a causa de la pérdida de estabilidad?

¿Mi diseño se puede modificar para garantizar la estabilidad de los componentes delgados de mi ensamblaje?

Los estudios de frecuencia ofrecen herramientas para el análisis de modos y frecuencias naturales. Esto es esencial en el diseño de muchos componentes cargados estática y dinámicamente. Las preguntas típicas que se responderán con este tipo de estudio son:

¿Mi pieza resonará bajo cargas funcionales normales? ¿Las características de frecuencia de mis componentes son adecuadas para la aplicación dada?

¿Mi diseño se puede modificar para mejorar las características de frecuencia?

Los estudios térmicos ofrecen herramientas para el análisis de la transferencia térmica mediante conducción, convección y radiación. Las preguntas típicas que se responderán con este tipo de estudio son:

¿Los cambios de temperatura afectarán a mi modelo? ¿Cómo funciona mi modelo en un entorno con fluctuación de temperatura?

¿Cuánto tiempo tarda mi modelo en enfriarse o sobrecalentarse? ¿El cambio de temperatura provocará que mi modelo se expanda? ¿Las tensiones provocadas por el cambio de temperatura provocarán que m

¿Las tensiones provocadas por el cambio de temperatura provocarán que mi producto falle (se usarán estudios estáticos, junto a estudios térmicos, para responder a esta pregunta)?

Los estudios de choque se usan para analizar la tensión de las piezas o ensamblajes móviles que impactan contra un obstáculo. Las preguntas típicas que se responderán con este tipo de estudio son:

¿Qué ocurrirá si mi producto no se maneja adecuadamente durante el transporte o se cae?

¿Cómo se comportará mi producto si se cae en un suelo de madera duro, una alfombra o cemento?

Se aplican estudios de optimización para mejorar (optimizar) su diseño inicial en función de un conjunto de criterios seleccionados, como la tensión máxima, el peso, la frecuencia óptima, etc. Las preguntas típicas que se responderán con este tipo de estudio son:

¿Se puede cambiar la forma de mi modelo manteniendo la finalidad del diseño?

¿Mi diseño se puede hacer más ligero, pequeño o económico sin comprometer la capacidad de rendimiento?

Los estudios de fatiga analizan la resistencia de las piezas y los ensamblajes cargados de forma repetida durante largos periodos de tiempo. Las preguntas típicas que se responderán con este tipo de estudio son:

¿La duración de la vida operativa de mi producto se puede calcular con precisión?

¿La modificación de mi diseño actual contribuirá a ampliar la vida del producto?

¿Mi modelo es seguro si se expone a cargas de temperatura o fuerza fluctuantes durante largos periodos de tiempo?

¿El rediseño de mi modelo ayudará a minimizar el daño provocado por las fuerzas o temperatura fluctuantes?

Los estudios no lineales ofrecen herramientas para analizar la tensión en piezas y ensamblajes que experimenten cargas importantes y/o grandes deformaciones. Las preguntas típicas que se responderán con este tipo de estudio son:

¿Las piezas de goma (por ejemplo, anillos tóricos) o de espuma tendrán un buen rendimiento bajo una carga determinada?

¿Mi modelo experimentará un plegado excesivo durante las condiciones de funcionamiento normales?

Los estudios dinámicos analizan objetos forzados por cargas que varían en el tiempo. Algunos ejemplos típicos pueden ser cargas de choque de componentes montados en vehículos, turbinas cargadas mediante fuerzas oscilatorias, componentes de aviones cargados aleatoriamente, etc. Se encuentran disponibles tanto linealmente (pequeñas deformaciones estructurales, modelos de material básico) y

no linealmente (grandes deformaciones estructurales, cargas importantes y materiales avanzados). Las preguntas típicas que se responderán con este tipo de estudio son: ¿Tienen un diseño seguro mis montajes cargados por cargas de choque cuando un vehículo pasa por un gran bache en la carretera? ¿Cuánto se deformará en estas circunstancias?

SolidWorks

Motion Simulation permite al usuario analizar el comportamiento cinemático y dinámico de los mecanismos. Las fuerzas inerciales y de unión se pueden transferir posteriormente a los estudios de SolidWorks Simulation para continuar con el análisis de la tensión. Las preguntas típicas que se responderán con este módulo son:

¿Cuál es el tamaño correcto del motor o actuador para mi diseño? ¿El diseño de los eslabonamientos, los engranajes o los mecanismos de cierre es óptimo?

¿Cuáles son los desplazamientos, las velocidades y las aceleraciones de los componentes del mecanismo?

¿El mecanismo es eficaz? ¿Se puede mejorar?

El módulo de compuestos permite a los usuarios simular estructuras fabricadas con materiales compuestos laminados. Las preguntas típicas que se responderán con este módulo son: ¿El modelo de compuestos falla con esta carga determinada? ¿Se puede aligerar la estructura usando materiales compuestos sin comprometer la fuerza y la seguridad?

¿Se delaminará mi compuesto de capas?

Introducción

Lección 1: Funcionalidad básica de SolidWorks Simulation

Una vez terminada correctamente esta lección, podrá comprender los conceptos básicos de SolidWorks Simulation y realizar análisis estáticos del siguiente ensamblaje.

Ejercicio de aprendizaje activo: Realización de un análisis estático

Use SolidWorks Simulation para realizar un análisis estático del ensamblaje Spider.SLDASM que se muestra a la derecha.

A continuación, se proporcionan instrucciones paso a paso.

Creación de un directorio SimulationTemp

Se recomienda guardar los Ejemplos de educación de SolidWorks Simulation en un directorio temporal a fin de guardar la copia original para su uso posterior.

- 1 Cree un directorio temporal denominado SimulationTemp en la carpeta Examples (Ejemplos) del directorio de instalación de SolidWorks Simulation.
- 2 Copie el directorio Ejemplos de educación de SolidWorks Simulation en el directorio SimulationTemp.

Apertura del documento Spider.SLDASM

 Haga clic en Open (Abrir)
 en la barra de herramientas Standard

(Estándar). Aparece el cuadro de diálogo **Open** (Abrir).

- 2 Desplácese a la carpeta SimulationTemp del directorio de instalación de SolidWorks Simulation.
- 3 Seleccione Spider.SLDASM.
- 4 Haga clic en **Open** (Abrir).

🕽 🌙 🗢 📕 « SolidWork	 cosmosworks Example 	s 🕨 SimulationTemp 🕨 spider	✓ Search	n spider	
Organize 👻 New folder					
★ Favorites	Name	Date modified	Туре	Size	
E Desktop	/ cantilever	5/11/2007 10:32 AM	SolidWorks Part D	89 KB	
🗼 Downloads	🗭 hub	3/5/2008 2:21 AM	SolidWorks Part D	162 KB	
Secent Places	🔩 Plate-with-hole	3/14/2008 4:14 AM	SolidWorks Part D	352 KB	
	🖋 shaft	3/5/2008 2:21 AM	SolidWorks Part D	178 KB	
🥽 Libraries	🗼 spider	3/5/2008 2:21 AM	SolidWorks Assem	325 KB	
Documents	🌯 spider	3/5/2008 2:21 AM	SolidWorks Part D	302 KB	
J Music					
Pictures					
Videos 📃					
. Constant					
Local Dick (C)					
SimpleDrive (F)					
SimpleDrive (G)					
	Den Open	References			
	Advanced	Configurations: Default	•		
	Lightweight	Display States (linked)	•		
	I les Casadante	Do not load hidden			
	ose speedpak	components			
5 3			C r nu	1 51 (5.11	
File nar	ne: spider		- Solidwo	orks mes (".sidp	nç .sida
			0		Connel

instalado correctamente, aparece el menú SolidWorks Simulation en la barra de menús de SolidWorks. De lo contrario:

1 Haga clic en Tools, Add-Ins (Herramientas, Complementos).

Aparece el cuadro de diálogo Add-Ins (Complementos).

- 2 Seleccione las casillas de verificación situadas junto a SolidWorks Simulation. Si SolidWorks Simulation no se encuentra en la lista, es necesario instalarlo.
- 3 Haga clic en **OK** (Aceptar).

El menú Simulation aparecerá en la barra de menús de SolidWorks.

Establecimiento de las unidades del análisis

Antes de empezar esta lección, estableceremos las unidades del análisis

- 1 En la barra de menús de SolidWorks, haga clic en Simulation, Options (Opciones).
- 2 Haga clic en la pestaña **Default Options** (Opciones predeterminadas).
- 3 Seleccione SI (MKS) en Unit system (Sistema de unidades).
- 4 Seleccione mm y N/mm² (MPa) en los campos Length/ **Displacement (Longitud/ Desplazamiento)** y **Pressure**/ Stress (Presión/Tensión), respectivamente.
- 5 Haga clic en **OK** (Aceptar).

System Options Default Options	
Units Load/Fisture Mesh Results Plot Color Chart Color Chart Plot	Unit system © S (MKS) C rapid (PS) Metric (G) Units Length/Displacement: mm Temperature: Kehrin v Angular velocity: rad/sec Pressure/Stress: N/mm^22Mi v

Paso 1: Creación de un estudio

El primer paso para realizar un análisis consiste en crear un estudio.

1 Haga clic en **Simulation**, **Study (Estudio)** en el menú principal de SolidWorks en la parte superior de la pantalla.

Aparece el PropertyManager Study (Estudio).

- 2 En Name (Nombre), escriba My First Study (Mi primer estudio).
- 3 En Type (Tipo), escriba Static (Estático).
- 4 Haga clic en **OK** (Aceptar).

SolidWorks Simulation crea un árbol de estudio de Simulation situado bajo el árbol de diseño de FeatureManager.

My First Study (-Default-)
🚊 🧐 Parts
hub-1
🛅 shaft-1
🔚 🗁 spider-1
Connections
🕀 🖶 Component Contacts
Fixtures
Mesh

Model | Motion Study 1 | 🐙 My First Study

También se crea una pestaña en la parte inferior de la ventana para que navegue entre los distintos estudios y su modelo.

Paso 2: Asignación de materiales

Todos los componentes del ensamblaje están hechos de acero aleado.

Asignación de acero aleado a todos los componentes.

1 En el árbol de

SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en la carpeta Parts (Piezas) y haga clic en Apply Material to All (Aplicar el material a todo).

Aparece el cuadro de diálogo Material.

- **2** Haga lo siguiente:
 - a) Expanda la carpeta de la biblioteca SolidWorks Materials (Materiales de Solidworks).

b) Expanda la categoría Steel (Acero).

c) Seleccione Alloy Steel (Acero aleado).

Nota: Las propiedades mecánicas y físicas del acero aleado aparecen en la tabla situada a la derecha.

- 3 Haga clic en Apply (Aplicar).
- 4 Cierre la ventana Materials (Materiales).

El acero aleado se asigna a todos los componentes y

aparece una marca de verificación al lado del icono de cada (-Alloy Steel-) spider-1 (-Alloy Steel-) componente. Observe que el nombre del material asignado aparece al lado del nombre del componente.

Paso 3: Aplicación de sujeciones

Repararemos los tres taladros.

- 1 Utilice las teclas de **flecha** para girar el ensamblaje como se muestra en la figura.
- 2 En el árbol de estudio de Simulation, haga clic con el botón derecho del ratón en la carpeta Fixtures (Sujeciones) y haga clic en Fixed Geometry (Geometría fija).

Aparece el PropertyManager Fixture.

- 3 Asegúrese de que el **Type (Tipo)** esté establecido en **Fixed Geometry (Geometría fija)**.
- 4 En la zona de gráficos, haga clic en las caras de los tres taladros, que se indican en la figura que se muestra a continuación.

Aparecen Face (Cara) <1>, Face (Cara) <2> y Face (Cara) <3> en el cuadro Faces, Edges, Vertices for Fixture (Caras, aristas o vértices para sujeción).

5 Haga clic en 🖌.

Se aplica la sujeción Fixed (Fijo) y sus símbolos aparecen en las caras seleccionadas.

Además, aparece un elemento Fixed-1 (Fija 1) en la carpeta Fixtures (Sujeciones) del árbol de estudio de Simulation. El nombre de la sujeción puede modificarse cuando lo desee.

Paso 4: Aplicación de cargas

Aplicaremos una fuerza normal de 2.250 N (505,82 lbf) a la cara que se muestra en la figura.

- 1 Haga clic en el icono **Zoom to Area (Zoom encuadre)** en la parte superior de la zona de gráficos y amplíe la pieza achaflanada del eje.
- 2 En el árbol de SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en la carpeta External Loads (Cargas externas) y seleccione Force (Fuerza).

Aparece el PropertyManager Force/Torque (Fuerza/ Momento de torsión).

3 En la zona de gráficos, haga clic en la cara que se muestra en la figura.

Aparece Face (Cara) <1> en el cuadro de lista Faces and Shell Edges for Normal Force (Caras y aristas de vaciado para fuerza normal).

- 4 Asegúrese de que esté seleccionada la opción Normal como la dirección.
- 5 Asegúrese de que la opción Units (Unidades) esté establecida en SI.
- 6 En el cuadro Force Value (Valor de fuerza) 4, escriba 2.250.
- 7 Haga clic en 🖌.

SolidWorks Simulation aplica la fuerza a la cara seleccionada y aparece el elemento Force-1 (Fuerza-1) en la carpeta External Loads (Cargas externas).

Para ocultar los símbolos de cargas y sujeciones

En el árbol SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en Fixtures (Sujeciones) o en la carpeta External Loads (Cargas externas) y haga clic en **Hide All (Ocultar todo)**.

Paso 5: Mallado del ensamblaje

El mallado divide el modelo en piezas más pequeñas denominadas elementos. Según las cotas geométricas del modelo, SolidWorks Simulation sugiere un tamaño de elemento predeterminado (en este caso, 4,564 mm) que puede modificarse según sea necesario.

1 En el árbol de estudio de Simulation, haga clic con el botón derecho del ratón en el icono Mesh (Malla) y seleccione Create Mesh (Crear malla).

Aparece el PropertyManager Mesh (Malla).

2 Expanda **Mesh Parameters (Parámetros de malla)** seleccionando la casilla de verificación.

Asegúrese de que la opción **Curvature based mesh (Malla basada en curvatura)** esté seleccionada.

Mantenga los valores predeterminados de Maximum element size (Tamaño máximo de elemento) A, Minimum element size (Tamaño mínimo de elemento) A, Min number of elements in a circle (N.º mín. de elementos en un círculo) I y Element size growth ratio (Cociente de crecimiento del tamaño del elemento) sugeridos por el programa.

3 Haga clic en OK (Aceptar) para comenzar el mallado.

Paso 6: Ejecución del análisis

En el árbol de estudio de Simulation, haga clic con el botón derecho del ratón en el icono My First Study (Mi primer estudio) y haga clic en **Run (Ejecutar)** para iniciar el análisis.

Cuando el análisis termina, SolidWorks Simulation crea automáticamente trazados de resultados predeterminados guardados en la carpeta Results (Resultados).

Paso 7: Visualización de los resultados

Tensión de von Mises

 Haga clic en el signo "más" i situado junto a la carpeta Results (Resultados).

Aparecen todos los iconos de los trazados predeterminados.

Nota: Si no aparece ningún trazado predeterminado, haga clic con el botón derecho del ratón en la carpeta Results (Resultados) y seleccione Define Stress Plot (Definir trazado de tensiones). Establezca las opciones en el PropertyManager y haga clic en ✓.

- 2 Haga doble clic en Stress1 (-vonMises-) (Tensión 1) para mostrar el trazado de tensiones.
 - **Nota:** Para mostrar la anotación que indica los valores mínimos y máximos en el trazado, haga doble clic en la leyenda y seleccione las casillas de verificación Show min annotation (Mostrar una anotación mínima) y Show max annotation (Mostrar una anotación máxima). Luego, haga clic en 🖌.

Animación del trazado

1 Haga clic con el botón derecho del ratón en Stress1 (-vonMises-) (Tensión 1) y haga clic en Animate (Animar).

Aparece el PropertyManager **Animation (Animación)** y la animación se inicia automáticamente.

2 Detenga la simulación haciendo clic en el botón Stop (Detener)

 Image: Comparison of the second state of the

La animación se debe detener para guardar el archivo .avi en el disco.

- 3 Seleccione Save as AVI File (Guardar como archivo AVI), haga clic en ... para examinar y seleccione la carpeta de destino en la que se guardará el archivo .avi.
- 4 Haga clic en para Play (Reproducir) la animación.
 La animación se reproduce en el área de gráficos.
- 5 Haga clic en 🔳 para Stop (Detener) la animación.
- 6 Haga clic en para cerrar el PropertyManager Animation (Animación).

Animation	?
🗸 🗙	
Basics	~
5	÷
50	
→ ☞ ↔	
Save as AVI file	~
Options	
C:\Program Files\Soli	
🔲 View with Media playe	r

Visualización de los desplazamientos resultantes

1 Haga doble clic en Displacement1

(--Res disp-) (Desplazamiento 1) para mostrar el trazado de desplazamientos resultante.

¿Es seguro el diseño?

El **Factor of Safety wizard (Asistente para Factor de seguridad)** puede ayudarle a responder a esta pregunta. Utilizaremos el asistente para calcular el factor de seguridad en todos los puntos del modelo. En el proceso, necesitará seleccionar un criterio de fallos del límite elástico.

1 Haga clic con el botón derecho del ratón en la carpeta Results (Resultados) y seleccione Define Factor of Safety Plot (Definir factor de trazado de seguridad).

Aparece el **PropertyManager** Factor of Safety wizard (Asistente para Factor de seguridad) **Step 1 of 3 (Paso 3 de 3)**.

2 En Criterion (Criterio) *****, haga clic en Max von Mises stress (Tensión de von Mises máx).

Nota: Hay varios criterios de límite elástico disponibles. El criterio von Mises suele usarse para comprobar fallos de límite elástico de materiales dúctiles.

3 Haga clic en 🕣 Next (Siguiente).

Aparece el **PropertyManager** Factor of Safety wizard (Asistente para Factor de seguridad) **Step 2 of 3 (Paso 3 de 3)**.

- 4 Establezca Units (Unidades) [en N/mm² (MPa).
- 5 En Set stress limit to (Establecer límite de tensión), seleccione Yield strength (Límite elástico).
 - **Nota:** Cuando el material cede, sigue deformándose en forma plástica a mayor velocidad. En un caso extremo, puede continuar deformándose aunque no se aumente la carga.
- 6 Haga clic en 🕣 Next (Siguiente).

Aparece el **PropertyManager** Factor of Safety wizard (Asistente para Factor de seguridad) **Step 3 of 3 (Paso 3 de 3)**.

- 7 Seleccione Areas below factor of safety (Áreas por debajo del factor de seguridad) e introduzca 1.
- 8 Haga clic en 🛹 para generar el trazado.

Inspeccione el modelo y busque las áreas no seguras que se muestran en rojo. Puede observarse que el trazado no tiene ninguna parte en color rojo, lo que indica que todas las ubicaciones son seguras.

階 Factor	of Safety ?
 ✓ X 	6 9
Step 2 of	3
N/m	m^2 (MPa) ▼
Set s	tress limit to
I Yi	eld strength
© ∪I	timate strength
© U:	ser defined
	1
Multip	blication factor
	1
Beam Resu	lts:
- A	Show combined stress on Beams
Shell Result	s:
	Minimum
Material inv	olved
Alloy	/ Steel
Yield 620. Ultim 723.	strength: 422 N/mm^2 (MPa) aate strength: 826 N/mm^2 (MPa)

¿Cuán seguro es el diseño?

1 Haga clic con el botón derecho del ratón en la carpeta Results (Resultados) y seleccione Define Factor of Safety Plot (Definir factor de trazado de seguridad).

Aparece el PropertyManager Factor of Safety wizard (Asistente para Factor de seguridad) Step 1 of 3 (Paso 1 de 3).

- 2 En la lista Criterion (Criterio), seleccione Max von Mises stress (Tensión de von Mises máx).
- 3 Haga clic en Next (Siguiente).

Aparece el PropertyManager Factor of Safety wizard (Asistente para Factor de seguridad) Step 2 of 3 (Paso 1 de 3).

4 Haga clic en Next (Siguiente).

Aparece el PropertyManager Factor of Safety wizard (Asistente para Factor de seguridad) Step 3 of 3 (Paso 1 de 3).

- 5 En Plot results (Trazado de resultados), haga clic en Factor of safety distribution (Distribución del factor de seguridad).
- 6 Haga clic en 🧹.

El trazado generado muestra la distribución del factor de seguridad. El factor más pequeño de seguridad es aproximadamente de 5,98.

Nota: Un factor de seguridad de 1,0 en una ubicación significa que el material está alcanzando el límite elástico. Por ejemplo, un factor de seguridad de 2,0 significa que el diseño es seguro en esa ubicación y que el material alcanzará el límite elástico si dobla las cargas.

Puesto que algunas regiones del modelo experimentan muy poca tensión, el valor máximo del factor de seguridad es muy alto (por encima de 1.800.000). Para que el trazado sea más significativo, cambiaremos el valor máximo de la leyenda a 100.

- 7 Haga doble clic en la leyenda, haga clic en Defined (Definido) y escriba 100 en el campo Max (Máx.).
- 8 Haga clic en varia para mostrar el trazado modificado.

Guardado de todos los trazados generados

1 Haga clic con el botón derecho del ratón en el icono My First Study (Mi primer estudio) y haga clic en Save all plots as JPEG files (Guardar todos los trazados como imágenes .jpeg).

Aparece la ventana Browse for Folder (Buscar carpeta).

- 2 Vaya al directorio donde desee guardar todos los trazados de resultados.
- **3** Haga clic en **OK** (Aceptar).

Generación de un informe del estudio

La utilidad **Report (Informe)** le ayuda a documentar su trabajo rápida y sistemáticamente para cada estudio. El programa genera informes estructurados preparados como documentos de Word que describen todos los aspectos relacionados con el estudio.

Report Options

1 Haga clic en **Simulation (Simulación)**, **Report (Informe)** en el menú principal de SolidWorks en la parte superior de la pantalla.

Aparece el cuadro de diálogo **Report Options (Opciones de informe)**.

La sección **Report sections (Secciones de informe)** le permite elegir secciones que se incluirán en el informe generado. Utilice casillas de verificación al lado de cada sección para incluirla o excluirla del informe.

2 Es posible personalizar cada sección del informe. Por ejemplo, seleccione la sección Description (Descripción) en Report sections (Secciones de informe) y escriba el texto que desee en el campo Section properties (Propiedades de sección).

El resto de las secciones se personalizarían de la misma manera.

Curren	nt report format: Static Study Format	
Report see	ctions: Section properties	
Description Assumptions Model Informal Study Propertie Units Units Loads and Fixit Connector Def Contact Inform Mesh Informati Sensor Details Denuet format	Description: Spider simulation E trites finitions abion ion * *	
Header informat	tion	
Designer:	John Brown	
Company:	My corporation	
URL:		
Eugo.		
Address:		
Phone:	Fax:	
Report publish o	options	
Report path:	C:\Program Files\SolidWorks 2011\SolidWorks\cosmosworks\Exa	
Document name: spider-My First Study-1		
Show report on publish		
and another		
F	Publish Apply Cancel Help	

×

3 Los nombres de **Designer (Diseñador)** y

Company (Empresa), **Logo (Logotipo)** y otra información de propiedad se introduce en la sección **Header information (Información de encabezado)**. Tenga en cuenta que los formatos aceptables para los archivos de logotipo son

archivos JPEG (*.jpg), archivos GIF (*.gif), o archivos de mapa de bits (*.bmp).

4 En Report publishing options (Opciones de publicación de informe), especifique en Report path la ruta de acceso al informe donde el documento de Word se guardará y seleccione la casilla de verificación Show report on publish (Mostrar informe al publicar).

5 Haga clic en Publish (Publicar).

El informe se abre en su documento de Word. Para completar el informe, edite el documento de Word según sea necesario.

Además, el programa crea un icono 📔 en la carpeta Report (Informe) del árbol de SolidWorks Simulation Manager.

Para modificar cualquier sesión del informe, haga clic con el botón derecho del ratón en el icono del informe y haga clic en **Edit Definition (Editar definición)**. Modifique la sección y haga clic en **OK (Aceptar)** para reemplazar el informe existente.

Paso 8: Guardado del trabajo y salida de SolidWorks

- 1 Haga clic en 료 en la barra de herramientas Standard (Estándar) o haga clic en File, Save (Archivo, Guardar).
- 2 Haga clic en File, Exit (Archivo, Salir) en el menú principal.

Evaluación de cinco minutos

	¿Qué hace si el menú SolidWorks Simulation no está en la barra de menús de SolidWorks?
	¿Qué tipos de documento puede analizar SolidWorks Simulation?
ļ	¿Qué es un análisis?
5	¿Por qué es importante un análisis?
;	¿Qué es un estudio de análisis?
,	¿Qué tipo de análisis puede realizar SolidWorks Simulation?
	¿Qué calcula un análisis estático?
)	¿Qué es la tensión?
10	¿Cuáles son los pasos principales para realizar un análisis?
1	¿Cómo puede cambiar el material de una pieza?

Proyectos: Deflexión de una viga debido a una fuerza final

Algunos problemas simples tienen respuestas exactas. Uno de estos problemas es una viga cargada por una fuerza en su extremo como se muestra en la figura. Utilizaremos SolidWorks Simulation para solucionar este problema y comparar los resultados con la solución exacta.

Tareas

- 1 Abra el archivo
 - Front_Cantilever.sldprt ubicado en la carpeta Examples (Ejemplos) del directorio de instalación de SolidWorks Simulation.
- 2 Mida la anchura, la altura y la longitud de la viga voladiza.
- **3** Guarde la pieza con otro nombre.
- 4 Cree un estudio Static (Estático).
- 5 Asigne Alloy Steel (Acero aleado) a la pieza. ¿Cuál es el valor del módulo elástico en psi?

Respuesta:

- 6 Repare una de las caras de los extremos de la viga voladiza.
- 7 Aplique una fuerza descendente a la arista superior de la otra cara del extremo con una magnitud de **500 N**.
- 8 Malle la pieza y ejecute el análisis.
- **9** Trace el desplazamiento en la dirección Y. ¿Cuál es el desplazamiento Y máximo en el extremo libre de la viga voladiza?

Respuesta:

10 Calcule el desplazamiento vertical teórico en el extremo libre con la siguiente fórmula:

$$UY_{Theory} = \frac{4FL^3}{Ewh^3}$$

donde F es la fuerza, L es la longitud de la viga, E es el módulo de elasticidad, w y h son la anchura y la altura de la viga respectivamente.

Respuesta:

11 Calcule el error en el desplazamiento vertical con la siguiente fórmula:

$$ErrorPercentage = \left(\frac{UY_{Theory} - UY_{COSMOS}}{UY_{Theory}}\right)100$$

Respuesta:

Hoja de vocabulario de la lección 1

Nombre:	_Clase:	Fecha:
Complete los espacios en blanco con las pal	abras adecuadas.	

- Secuencia de creación de un modelo en SolidWorks, fabricación y prueba de un prototipo:
- 2 Escenario *hipotético* de tipo de análisis, materiales, cargas y sujeciones: _____
- 3 Método que SolidWorks Simulation utiliza para realizar análisis:
- 4 Tipo de estudio que calcula los desplazamientos, las deformaciones unitarias y las tensiones: ______
- 5 Proceso de subdivisión del modelo en pequeñas piezas:
- 6 Piezas pequeñas de formas simples creadas durante el mallado:
- 7 Elementos que comparten puntos comunes:
- 8 Fuerza que actúa en un área dividida por esa área:
- 9 Colapso repentino de diseños alargados debido a cargas axiales de compresión:
- **10** Estudio que calcula el calor que alcanza un diseño: ______
- 11 Número que proporciona una descripción general del estado de tensión:
- 12 Tensiones normales en planos en los que las tensiones de cortadura desaparecen:
- **13** Frecuencias en las que un sólido tiende a vibrar:
- 14 Tipo de análisis que puede ayudarle a evitar la resonancia:

Cuestionario de la lección 1

Nombre:	Clase:	Fecha:
Instrucciones: Responda a cada pregunta esc. proporcionado.	ribiendo la respue	sta correcta en el espacio

- 1 La prueba del diseño se realiza creando un estudio. ¿Qué es un estudio?
- 2 ¿Qué tipo de análisis puede realizar SolidWorks Simulation?
- **3** Después de obtener los resultados de un estudio, cambió el material, las cargas y/o las sujeciones. ¿Debe volver a mallar?
- 4 Después de mallar un estudio, cambió la geometría. ¿Debe volver a mallar el modelo?

- 5 ¿Cómo crea un estudio estático?
- 6 ¿Qué es una malla? _____
- 7 En un ensamblaje ¿cuántos iconos prevé ver en la carpeta Solids (Sólidos)?

Lección 1: Funcionalidad básica de SolidWorks Simulation

Lección 2: Métodos adaptativos en SolidWorks Simulation

Una vez que esta lección se complete correctamente, usted podrá (a) utilizar métodos adaptativos para mejorar la precisión de los resultados y (b) aplicar sujeciones de simetría para analizar un cuarto de su modelo original.

Calculará las tensiones de una chapa cuadrada de 500 mm x 500 mm x 25 mm (19,68 pulg. x 19,68 pulg. x 0,98 pulg.) con un taladro de 25 mm (0,98 pulg.) de radio en el centro. La chapa está sometida a una presión de tracción de 1 MPa (145,04 psi).

Comparará la concentración de tensión en el taladro con los resultados teóricos conocidos.

Ejercicio de aprendizaje activo: Parte 1

Use SolidWorks Simulation para realizar un análisis estático de la pieza Plate-with-hole.SLDPRT que se muestra a la derecha.

Calculará las tensiones de una chapa cuadrada de 500 mm x 500 mm x 25 mm (19,68 pulg. x 19,68 pulg. x 0,98 pulg.) con un taladro de 25 mm (0,98 pulg.) de radio en el centro. La chapa está sometida a una presión de tracción de 1 MPa (145,04 psi).

resultados teóricos conocidos.

A continuación, se proporcionan instrucciones paso a paso.

Creación del directorio Simulationtemp

Se recomienda guardar los Ejemplos de educación de SolidWorks Simulation en un directorio temporal a fin de guardar la copia original para su uso posterior.

- 1 Cree un directorio temporal denominado Simulationtemp en la carpeta Examples (Ejemplos) del directorio de instalación de SolidWorks Simulation.
- 2 Copie el directorio SolidWorks Simulation Education Examples (Ejemplos de educación de SolidWorks Simulation) en el directorio Simulationtemp.

Apertura del documento Plate-with-hole.SLDPRT

- 1 Haga clic en **Open** 🔗 (Abrir) en la barra de herramientas Standard (Estándar). Aparece el cuadro de diálogo Open (Abrir).
- 2 Desplácese a la carpeta Simulationtemp del directorio de instalación de SolidWorks Simulation.
- 3 Seleccione Plate-with-hole.SLDPRT.
- 4 Haga clic en **Open** (Abrir).

La pieza Plate-with-hole.SLDPRT se abre.

Observe que la pieza tiene dos configuraciones: (a) Quarter plate (Cuarto de chapa) y (b) Whole plate (Chapa completa). Asegúrese de que la configuración Whole plate se encuentre activa.

Las configuraciones del documento se incluyen en la pestaña Nota: ConfigurationManager 🛐 en la parte superior del panel izquierdo.

Selección del menú SolidWorks Simulation

Si SolidWorks Simulation tiene los complementos adecuados, aparece el menú SolidWorks Simulation en la barra de menús de SolidWorks. De lo contrario:

1 Haga clic en Tools, Add-Ins (Herramientas, Complementos).

Aparece el cuadro de diálogo Add-Ins (Complementos).

2 Seleccione las casillas de verificación situadas junto a SolidWorks Simulation.

Si SolidWorks Simulation no se encuentra en la lista, necesita instalar SolidWorks Simulation.

3 Haga clic en **OK** (Aceptar).

El menú SolidWorks Simulation aparecerá en la barra de menús de SolidWorks.

Establecimiento de las unidades del análisis

Antes de empezar esta lección, estableceremos las unidades del análisis.

- 1 Haga clic en Simulation, Options (Opciones).
- 2 Haga clic en la pestaña **Default Options** (Opciones predeterminadas).
- 3 Seleccione SI (MKS) en Unit system (Sistema de unidades) y mm y N/mm² (MPa) como unidades de longitud y tensión, respectivamente.
- 4 Haga clic en 🖌 .

Paso 1: Creación de un estudio

El primer paso para realizar un análisis consiste en crear un estudio.

1 Haga clic en **Simulation, Study** (Estudio) en el menú principal de SolidWorks en la parte superior de la pantalla.

Aparece el PropertyManager Study (Estudio).

- 2 En Name (Nombre), escriba Whole plate (Chapa completa).
- 3 En Type (Tipo), escriba Static (Estático).
- 4 Haga clic en 🧹.

SolidWorks Simulation crea un árbol de estudio de Simulation situado bajo el árbol de diseño de FeatureManager.

Paso 2: Asignación de materiales

Asignación de acero aleado

1 En el árbol de SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en la carpeta Plate-with-hole (Chapa con orificio) y haga clic en Apply Material to All Bodies (Aplicar material a todos los sólidos).

Aparece el cuadro de diálogo **Material**.

- 2 Haga lo siguiente:
 - a) Expanda la carpeta de la biblioteca SolidWorks

Material SolidWorks Materials Properties Tables & Curves Appearance CrossHa 🗄 🚹 Steel Material properties 1023 Carbon Steel Sheet (SS) Materials in the default library can not be edited 201 Annealed Stainless Steel (SS) a custom library to edit it. A286 Iron Base Superalloy Model Type: Linear Elastic Isotropic E AISI 1010 Steel, hot rolled bar AISI 1015 Steel, Cold Drawn (SS) Units: SI - N/m^2 (Pa) Category: Steel AISI 1020 Steel, Cold Rolled AISI 1035 Steel (SS) Alloy Steel Name: AISI 1045 Steel, cold drawn Default failure Max von Mises Stress AISI 304 criterion: AISI 316 Annealed Stainless Steel Bar (SS Description: AISI 316 Stainless Steel Sheet (SS) Source: AISI 321 Annealed Stainless Steel (SS) E AISI 347 Annealed Stainless Steel (SS) Sustainability: Defined AISI 4130 Steel, annealed at 865C AISI 4130 Steel, normalized at 870C Property Value Units 📲 AISI 4340 Steel, annealed 2.1e+011 N/m[^] AISI 4340 Steel, normalized 0.28 N/A AISI Type 316L stainless steel Shear Modulus 7.9e+010 N/m[^] AISI Type A2 Tool Steel 7700 kg/n 723825600 N/m^ Alloy Stee Fensile Strend

Materials (Materiales de Solidworks).

- b) Expanda la categoría Steel (Acero).
- c) Seleccione Alloy Steel (Acero aleado).

Nota: Las propiedades mecánicas y físicas del acero aleado aparecen en la tabla situada a la derecha.

3 Haga clic en **OK** (Aceptar).

Paso 3: Aplicación de sujeciones

Aplique sujeciones para evitar las rotaciones fuera del plano y los movimientos de cuerpos libres.

1 Presione la barra espaciadora y seleccione *Trimetric (Trimétrica) en el menú Orientation (Orientación).

La orientación del modelo es como puede verse en la figura.

2 En el árbol de estudio de Simulation, haga clic con el botón derecho del ratón en la carpeta Fixtures (Sujeciones) y haga clic en Advanced Fixtures (Sujeciones avanzadas).

Aparece el PropertyManager Fixture.

3 Asegúrese de que la opción Type (Tipo) esté establecida en Use Reference Geometry (Utilizar geometría de referencia).

4 En la zona de gráficos, seleccione las 8 aristas que se muestran en la figura.

Aparecen de Edge<1> a Edge<8> en el cuadro Faces, Edges, Vertices for Fixture (Caras, aristas o vértices para sujeción).

- 5 Haga clic en el cuadro Face, Edge, Plane, Axis for Direction (Cara, arista, plano o eje para dirección) y seleccione Plane1 (Plano 1) en el árbol de FeatureManager desplegable.
- 6 En Translations (Traslaciones), seleccione Along plane Dir 2 M (A lo largo del plano Dir. 2).
- 7 Haga clic en 🖌.

Las sujeciones se aplican y sus símbolos aparecen en las aristas seleccionadas.

Además, aparece un icono de sujeción 🗊 (Reference Geometry-1) (Geometría de referencia-1) en la carpeta Fixtures (Sujeciones).

De forma similar, siga los pasos 2 al 7 para aplicar sujeciones al conjunto vertical de aristas como se muestra en la figura para restringir las 8 aristas Along plane Dir 1 (A lo largo del plano Dir. 1) de Plane1 (Plano 1).

Para evitar el desplazamiento del modelo en la dirección Z global, se debe definir una sujeción en el vértice que se muestra en la figura a continuación.

1 En el árbol de SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en la carpeta Fixtures (Sujeciones) y haga clic en Advanced Fixtures (Sujeciones avanzadas).

Aparece el PropertyManager Fixture.

- 2 Asegúrese de que la opción **Type** (Tipo) esté establecida en **Use reference geometry** (Utilizar geometría de referencia).
- 3 En la zona de gráficos, haga clic en el vértice que se muestra en la figura.

Aparece Vertex (Vértice) <1> en el cuadro Faces, Edges, Vertices for Fixture (Caras, aristas o vértices para sujeción).

- 4 Haga clic en el cuadro Face, Edge, Plane, Axis for Direction (Cara, arista, plano o eje para dirección) y seleccione Plane1 (Plano 1) en el árbol de FeatureManager desplegable.
- 5 En Translations (Traslaciones), seleccione Normal to Plane 🕅 (Normal al plano).
- 6 Haga clic en √.

Paso 4: Aplicación de presión

Aplique una presión de 1 MPa (145,04 psi) normal a las caras como se muestra en la figura.

 En el árbol de SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en la carpeta External Loads (Cargas externas) y haga clic en Pressure (Presión).

Aparece el PropertyManager **Pressure**.

- 2 En Type (Tipo), seleccione
 Normal to selected face
 (Normal a la cara seleccionada).
- 3 En la zona de gráficos, seleccione las cuatro caras que se muestran en la figura.

Aparecen de Face (Cara) <1> a Face (Cara) <4> en el cuadro de lista Faces for **Pressure** (Caras para presión).

- 4 Asegúrese de que la opción Units (Unidades) esté establecida en N/mm² (MPa).
- 5 En el cuadro **Pressure value** (Valor de presión) **H**, escriba **1**.
- 6 Marque la casilla **Reverse direction** (Invertir dirección).
- 7 Haga clic en 🖌.

SolidWorks Simulation aplica la presión normal a las caras seleccionadas y aparece el icono Pressure-1 (Presión-1) **He en la carpeta** External Loads (Cargas externas).

Para ocultar los símbolos de cargas y sujeciones

En el árbol SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en Fixtures (Sujeciones) o en la carpeta External Loads (Cargas externas) y haga clic en **Hide All (Ocultar todo)**.

Paso 5: Mallado del modelo y ejecución del estudio

El mallado divide el modelo en piezas más pequeñas denominadas elementos. Según las cotas geométricas del modelo, SolidWorks Simulation sugiere un tamaño de elemento predeterminado que puede modificarse según sea necesario.

1 En el árbol de SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en el icono Mesh (Malla) y seleccione **Create Mesh (Crear malla)**.

Aparece el PropertyManager Mesh (Malla).

2 Expanda Mesh Parameters (Parámetros de malla) seleccionando la casilla de verificación.

Asegúrese de que la opción **Curvature based mesh (Malla basada en curvatura)** esté seleccionada.

- 3 Escriba 50 mm para Maximum element size (Tamaño máximo de elemento) y acepte los valores predeterminados para el resto de los parámetros [Minimum element size (Tamaño mínimo de elemento) , M, Min number of elements in a circle (N.º mín. de elementos en un círculo) y Element size growth ratio (Cociente de crecimiento del tamaño del elemento) .
- 4 Marque Run (solve) the analysis (Ejecutar (solucionar) el análisis) en Options (Opciones) y haga clic en

Nota: Para ver el trazado de la malla, haga clic con el botón derecho del ratón en la carpeta Mesh (Malla) y seleccione Show Mesh (Mostrar malla)

Paso 6: Visualización de los resultados

Tensión normal en la dirección X global.

1 Haga clic con el botón derecho del ratón en la carpeta Results (Resultados) is y seleccione Define Stress Plot (Definir trazado de tensiones).

Aparece el PropertyManager Stress Plot (Trazado de tensiones).

- 2 En Display (Visualización).
 - a) Seleccione SX: Tensión normal de X en el campo Componente.
 - b) Seleccione N/mm² (MPa) en Units (Unidades).
- 3 Haga clic en 🖌 .

Se muestra la tensión normal en el trazado de dirección X.

Observe la concentración de tensiones en el área alrededor del taladro.

Paso 7: Verificación de los resultados

La tensión normal máxima $\sigma_{máx}$ de una chapa con una sección transversal rectangular y un taladro circular central es proporcionada por:

$$\sigma max = k \cdot \left(\frac{P}{t(D-2r)}\right) \qquad \qquad k = 3.0 - 3.13 \left(\frac{2r}{D}\right) + 3.66 \left(\frac{2r}{D}\right)^2 - 1.53 \left(\frac{2r}{D}\right)^3$$

donde:

D = anchura de la chapa = 500 mm (19,69 pulg.)

r = radio del taladro = 25 mm (0,98 pulg.)

t = espesor de la chapa = 25 mm (0,98 pulg.)

P = Fuerza axial de tracción = Presión * (D * t)

El valor analítico de la tensión normal máxima es $\sigma_{máx}$ = 3,0245 MPa (438,67 psi).

El resultado de SolidWorks Simulation, sin utilizar ningún método adaptativo, es SX = 2,416 MPa (350,41 psi).

Este resultado se desvía de la solución teórica en aproximadamente un 20,1%. Pronto verá que esta desviación insignificante puede atribuirse al grosor de la malla.

Ejercicio de aprendizaje activo: Parte 2

En la segunda parte del ejercicio, modelará el cuarto de chapa con ayuda de las sujeciones de simetría.

Nota: Las sujeciones de simetría pueden utilizarse para analizar sólo una parte del modelo. Este método puede representar un ahorro considerable de tiempo, particularmente si está trabajando con modelos grandes.

Las condiciones de simetría requieren que la geometría, las cargas, las propiedades de materiales y las sujeciones sean equivalentes en el plano de simetría.

Paso 1: Activación de nueva configuración

- 1 Haga clic en la pestaña
 - ConfigurationManager [.
- 2 En el gestor de **ConfigurationManager**, haga doble clic en el icono de Quarter plate (Cuarto de chapa).

Se activará la configuración Quarter plate (Cuarto de chapa).

El modelo del cuarto de chapa aparece en la zona de gráficos.

Nota: Para acceder a un estudio asociado con una configuración inactiva, haga clic con el botón derecho del ratón en su icono y seleccione Activate SW configuration (Activar configuración de SW).

Plate-with-hole Configuration(s) (Quarter plate)

Whole plate [Plate-with-hole]

Paso 2: Creación de un estudio

El nuevo estudio que usted crea se basa en la configuración Quarter plate (Cuarto de chapa) activa.

1 Haga clic en **Simulation, Study** (Estudio) en el menú principal de SolidWorks en la parte superior de la pantalla.

Aparece el PropertyManager Study (Estudio).

- 2 En Name (Nombre), escriba Quarter plate (Cuarto de chapa).
- 3 En Type (Tipo), escriba Static (Estático).
- 4 Haga clic en 🖌 .

SolidWorks Simulation crea un árbol representativo para el estudio situado en una pestaña en la parte inferior de la pantalla.

Model | Motion Study 1 | 💘 Whole plate | 💥 Quarter plate |

Paso 3: Asignación de materiales

Siga el procedimiento que se describe en el Paso 2 de la Parte 1 para asignar el material **Alloy Steel (Acero aleado)**.

Paso 4: Aplicación de sujeciones

Aplique sujeciones en las caras de la simetría.

- 1 Utilice las teclas de **flecha** para girar el modelo como se muestra en la figura.
- 2 En el árbol de estudio de Simulation, haga clic con el botón derecho del ratón en la carpeta Fixtures (Sujeciones) y seleccione Advanced Fixtures (Sujeciones avanzadas).

Aparece el PropertyManager **Fixtures** (Sujeciones).

- 3 Establezca el Type (Tipo) en Symmetry (Simetría).
- 4 En la zona de gráficos, haga clic en la Face 1 (Cara 1) y Face 2 (Cara 2) que se muestran en la figura.

Face<1> y Face<2> aparecen en el cuadro **Planar Faces for Fixture** (Caras planas para sujeción).

5 Haga clic en ✓.

A continuación, aplique una restricción a la arista superior de la chapa para evitar el desplazamiento en la dirección Z global.

Para restringir la arista superior:

1 En el árbol de SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en la carpeta Fixtures (Sujeciones) y seleccione Advanced Fixtures (Sujeciones avanzadas).

Establezca el Type (Tipo) en Use reference geometry (Utilizar geometría de referencia).

2 En la zona de gráficos, haga clic en la arista superior de la chapa que se muestra en la figura.

Aparece Edge (Arista) <1> en el cuadro Faces, Edges, Vertices for Fixture (Caras, aristas o vértices para sujeción).

3 Haga clic en el cuadro Face, Edge, Plane, Axis for Direction (Cara, arista, plano o eje para dirección) y seleccione Plane1 (Plano 1) en el árbol de FeatureManager desplegable.

- 4 En Translations (Traslaciones), seleccione Normal to plane (Normal al plano) №. Asegúrese de que los otros dos componentes estén desactivados.
- 5 Haga clic en 🖌.

Luego de aplicar todas las sujeciones, aparecen dos elementos (Symmetry-1) y (Reference Geometry-1) en la carpeta Fixtures.

Paso 5 Aplicación de presión

Aplique una presión de 1 MPa (145,04 psi) como se muestra en la figura a continuación:

1 En el árbol de SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en la carpeta External Loads (Cargas externas) y seleccione Pressure (Presión).

Aparece el PropertyManager Pressure.

- 2 En **Type** (Tipo), seleccione **Normal to selected face** (Normal a la cara seleccionada).
- **3** En la zona de gráficos, seleccione la cara que se muestra en la figura.
- 1 Aparece Face (Cara) <1> en el cuadro de lista Faces for Pressure (Caras para presión).
- 2 Establezca Units (Unidades) 📘 en N/mm^2 (MPa).
- 3 En el cuadro **Pressure value** (Valor de presión) **H**, escriba **1**.
- 4 Marque la casilla **Reverse direction** (Invertir dirección).
- 5 Haga clic en 🖌.

SolidWorks Simulation aplica la presión normal a las caras seleccionadas y aparece el icono Pressure-1 (Presión-1) \coprod en la carpeta External Loads (Cargas externas).

Paso 6 Mallado del modelo y ejecución del análisis

Aplique la misma configuración de malla a continuación del procedimiento que se describe en el Paso 5 de la Parte 1, Mallado del modelo y ejecución del análisis en la página 2-7. Luego, proceda a **Run (Ejecutar)** el análisis.

El trazado de la malla es como puede verse en la figura.

Paso 7 Visualización de tensiones normales en la dirección X global

- 1 En el árbol de estudio de Simulation, haga clic con el botón derecho del ratón en la carpeta Results (Resultados) in y seleccione Define Stress Plot (Definir trazado de tensiones).
- 2 En el PropertyManager Stress Plot (Trazado de tensiones), en Display (Visualización):
 - a) Seleccione SX: X Normal stress (SX: Tensión normal de X).
 - b) Seleccione N/mm² (MPa) en Units (Unidades).
- 3 En Deformed Shape (Forma deformada), seleccione True Scale (Escala real).
- 4 En Property (Propiedad):
 - a) Seleccione Associate plot with name view orientation (Asociar el trazado con orientación de vista etiquetada).
 - b) Seleccione *Front (Frontal) en el menú.
- 5 Haga clic en 🖌.

La tensión normal en la dirección X aparece en la forma deformada real de la chapa.

Paso 8 Verificación de los resultados

Para el cuarto de modelo, la tensión SX normal máxima es 2,217 MPa (321,55 psi). Este resultado es comparable con los resultados de la chapa completa.

Este resultado se desvía de la solución teórica en aproximadamente un 36%. Como se mencionó en la conclusión de la Parte 1 de esta lección, usted verá que esta desviación puede atribuirse al grosor de la malla computacional. Puede optimizar la precisión utilizando un tamaño de elemento menor manualmente o utilizando métodos adaptativos automáticos.

En la Parte 3, utilizará el método adaptativo h para optimizar la precisión.

Ejercicio de aprendizaje activo: Parte 3

En la tercera parte del ejercicio, aplicará el método adaptativo h para solucionar el mismo problema para la configuración Quarter plate (Cuarto de chapa).

Para demostrar la capacidad del método adaptativo h, mallará primero el modelo con un tamaño de elemento grande y luego observará de qué manera el método h cambia el tamaño de la malla para optimizar la precisión de los resultados.

Paso 1 Definición de un nuevo estudio

Creará un nuevo estudio duplicando el estudio anterior.

1 Haga clic con el botón derecho en el estudio Quarter plate (Cuarto de chapa) en la parte inferior de la pantalla y seleccione Duplicate (Duplicar).

	Duplicate
	Rename
	Delete
	Delete All Simulaton Studies
	Create New Motion Study
	Create New Simulation Study
	Create New Design Study
] 😽 Qu	arter plate

Aparece el cuadro de diálogo **Define Study Name** (**Definir nombre de estudio**).

- 2 En el cuadro Study Name (Nombre de estudio), escriba H-adaptive (adaptativo h).
- 3 En Configuration to use (Configuración a utilizar): seleccione Quarter plate (Cuarto de chapa).
- 4 Haga clic en **OK** (Aceptar).

efine Study Name
Study Name :
H-adaptive
Configuration to use:
Quarter plate
OK Cancel Help

Paso 2 Establecimiento de los parámetros del método adaptativo h

- 1 En el gestor de estudio de Simulation, haga clic con el botón derecho del ratón en H-adaptive (Adaptativo h) y seleccione **Properties (Propiedades).**
- 2 En el cuadro de diálogo, en la pestaña **Options (Opciones)**, seleccione **FFEPlus** en **Solver (Solucionador)**.
- 3 En la pestaña Adaptive (Adaptivo), en Adaptive method (Método adaptativo), seleccione h-adaptive (adaptativo h).
- 4 En h-Adaptive options (Opciones de adaptativo h), realice lo siguiente:
 - a) Mueva el control deslizante de **Target** accuracy (Precisión de destino) a 99%.
 - b) Establezca el valor de Maximum no. of loops (Nº de bucles máximo) en 5.
 - c) Seleccione Mesh coarsening (Grosor de malla).
- 5 Haga clic en **OK** (Aceptar).
 - **Nota:** Al duplicar el estudio, todas las carpetas del estudio original se copian en el nuevo estudio. Mientras las propiedades del nuevo estudio permanezcan sin cambios, no es necesario redefinir las propiedades de materiales, cargas, sujeciones, etc.

Static
Options Adaptive Row/Thermal Effects Remark
Adaptive method
© None
h-adaptive
© p-adaptive
h-Adaptive options
Target accuracy:
Local (Faster) Global (Slower)
Maximum no. of loops 5
V Mesh coarsening
p-Adaptive options
Stop when Total Strain Energy v change is 1 % or less
Update elements with relative Strain Energy error of 2 % or more
Starting p-order 2
Maximum p-order 5
Maximum no. of loops 4
OK Cancel Apply Help

Paso 3: Nuevo mallado del modelo y ejecución del estudio

1 En el árbol de SolidWorks Simulation Manager, haga clic con el botón derecho del ratón en la carpeta Mesh (Malla) y seleccione Create Mesh (Crear malla).

Aparece un mensaje de advertencia que indica que el nuevo mallado eliminará los resultados del estudio.

2 Haga clic en **OK** (Aceptar).

Aparece el PropertyManager Mesh (Malla).

- 3 Escriba 125 mm (4,92 pulg.) para Maximum element size (Tamaño máximo de elemento) y acepte los valores predeterminados para el resto de los parámetros [Minimum element size (Tamaño mínimo de elemento) , Min number of elements in a circle (N.º mín. de elementos en un círculo) y Element size growth ratio (Cociente de crecimiento del tamaño del elemento)].

Este valor alto para el tamaño de elemento global se utiliza para demostrar de qué manera el método adaptativo h afina la malla para obtener resultados precisos.

- 4 Haga clic en 🖌 . La imagen anterior muestra la malla gruesa inicial.
- 5 Haga clic con el botón derecho del ratón en el icono H-adaptive (adaptativo h) y seleccione Run (Ejecutar).

Paso 4: Visualización de resultados

Con la aplicación del método adaptativo h, el tamaño de la malla original se reduce. Observe la transición del tamaño de la malla de una malla más gruesa (bordes de la chapa) a una malla más fina en la ubicación del taladro central.

Para ver la malla convertida, haga clic con el botón derecho del ratón en el icono Mesh (Malla) y seleccione Show Mesh (Mostrar malla).

Visualización de tensión normal en la dirección X global

En el árbol de SolidWorks Simulation Manager, haga doble clic en el trazado de **Stress2** (X-normal) (Tensión 2 (normal a X)) en la carpeta Results (Resultados) 🛅.

El valor analítico de la tensión normal máxima es $\sigma_{máx}$ = 3,113 MPa (451,5) psi.

El resultado de SolidWorks Simulation con la aplicación del método adaptativo h es SX = 3,113 MPa, que se acerca más a la solución analítica (error aproximado: 2,9%).

Nota: La precisión deseada establecida en las propiedades del estudio (en su caso, 99%) no significa que las tensiones resultantes estarán dentro del error máximo de 1%. En el método de elementos finitos, se utilizan otras mediciones distintas de las tensiones para evaluar la precisión de la solución. Sin embargo, se puede concluir que, puesto que el algoritmo adaptativo refina la malla, la solución de la tensión es más precisa.

Paso 9 Visualización de gráficos de convergencia

- En el árbol de estudio de Simulation, haga clic con el botón derecho del ratón en la carpeta Results (Resultados) in y seleccione Define Adaptive Convergence Graph (Definir gráfico de convergencia adaptativo).
- 2 En el PropertyManager, marque todas las opciones y haga clic en 🧹.

Se muestra el gráfico de convergencia de todas las cantidades marcadas.

Nota: Para optimizar aún más la precisión de la solución, es posible continuar con las iteraciones de adaptabilidad h iniciando ejecuciones de estudios consecutivas. Cada ejecución de estudio posterior utiliza la malla final correspondiente a la última iteración de la ejecución anterior como la malla inicial para la nueva ejecución. Para intentar esto, proceda a **Run (Ejecutar)** el estudio H-adaptive (adaptativo h) nuevamente.

Evaluación de cinco minutos

- 1 Si modifica material, cargas o sujeciones, los resultados se invalidan mientras que la malla no. ¿Por qué?
- 2 ¿Invalida el cambio de una cota la malla actual?
- **3** ¿Cómo activa una configuración?
- 4 ¿Qué es un movimiento de cuerpo rígido?
- 5 ¿Qué es el método adaptativo h y cuándo se utiliza?
- 6 ¿Cuál es la ventaja de utilizar el método adaptativo h para mejorar la precisión en comparación con la utilización del control de malla?
- 7 ¿Cambia el número de elementos en iteraciones del método adaptativo p?

Proyectos: Modelado del cuarto de chapa con una malla sólida

Utilice la malla sólida para solucionar el modelo del cuarto de chapa. Aplicará el control de malla para mejorar la precisión de los resultados.

Tareas

- 1 Haga clic en **Insert, Surface, Mid Surface (Insertar, Superficie, Superficie media)** en el menú principal de SolidWorks en la parte superior de la pantalla.
- 2 Seleccione las superficies delantera y posterior de la chapa, como se muestra.
- 3 Haga clic en **OK** (Aceptar).
- 4 Cree un estudio**Static (Estático)** denominado Shells-quarter.
- 5 Expanda la carpeta Plate-with-hole (Chapa con orificio), haga clic con el botón derecho en SolidBody (Cuerpo sólido) y seleccione Exclude from Analysis (Excluir de análisis).
- 6 Defina un vaciado de **25 mm (pulg.)** (formulación **Thin (Delgada)**). Para ello:

- a) Haga clic con el botón derecho del ratón en SurfaceBody (Cuerpo superficial) en la carpeta Plate-with-hole (Chapa con orificio) del árbol de estudio de Simulation y seleccione **Edit Definition (Editar definición)**.
- b) En el PropertyManager Shell Definition (Definición de vaciado), seleccione mm y escriba 25 mm para Shell thickness (Espesor de vaciado).
- c) Haga clic en 🗹.
- 7 Asigne Alloy Steel (Acero aleado) al vaciado. Para ello:
 - a) Haga clic con el botón derecho del ratón en la carpeta Plate-with-hole (Chapa con orificio) y seleccione Apply Material to All Bodies (Aplicar material a todos los sólidos).
 - b) Expanda la biblioteca SolidWorks Materials (Materiales de SolidWorks) y seleccione Alloy Steel (Acero aleado) en la categoría Steel (Acero).
 - c) Seleccione Apply (Aplicar) y Close (Cerrar).
- 8 Aplique sujeciones de simetría a las dos aristas que se muestran en la figura.

a) Haga clic con el botón derecho del ratón en la carpeta Fixtures (Sujeciones) y seleccione Advanced Fixtures (Sujeciones avanzadas).

Nota: Para una malla de vaciado, es suficiente restringir una arista en lugar de la cara.

- b) En el campo Faces, Edges, Vertices for Fixture (Caras, aristas o vértices para sujeción), seleccione la arista indicada en la figura.
- c) En el campo Face, Edge, Plane, Axis for Direction (Cara, arista, plano o eje para dirección), seleccione Plane3 (Plano 3).
- d) Restrinja la traslación Normal to Plane (Normal al plano) y las rotaciones Along Plane Dir 1 (A lo largo del plano Dir. 1) y Along Plane Dir 2 (A lo largo del plano Dir. 2).
- e) Haga clic en 🖌.
- 9 Con el mismo procedimiento, aplique una sujeción de simetría a la otra arista que se muestra en la figura. Esta vez, utilice la operación Plane2 (Plano 2) para el campo Face, Edge, Plane, Axis for Direction (Cara, arista, plano o eje para dirección).

- **10** Aplique una **Pressure** de **1 N/mm^2 (MPa)** a la arista que se muestra en la figura.
 - a) Haga clic con el botón derecho del ratón en la carpeta External Loads (Cargas externas) y seleccione **Pressure (Presión)**.
 - b) En Type (Tipo), seleccione Use reference geometry (Usar geometría de referencia).
 - c) En el campo Faces, Edges for Pressure (Caras y aristas para presión), seleccione la arista vertical que se muestra en la figura.
 - d) En el campo Face, Edge, Plane, Axis for Direction
 (Cara, arista, plano o eje para dirección), seleccione la arista que se indica en la figura.
 - e) Especifique 1 N/mm² (MPa) en el cuadro de diálogo Pressure Value (Valor de presión).
 - f) Haga clic en 🖌.

- 11 Aplique control de malla a la arista que se muestra en la figura. La utilización de un tamaño de elemento menor mejora la precisión.
 - a) En el árbol de estudio de Simulation, haga clic con el botón derecho del ratón en la carpeta Mesh (Malla) y seleccione Apply Mesh Control (Aplicar control de malla). Aparece el PropertyManager Mesh Control (Control de malla).
 - b) Seleccione la arista del taladro como se muestra en la figura.
 - c) Haga clic en 🧹.

- 12 Malle la pieza y ejecute el análisis.
 - a) En el árbol de estudio de Simulation, haga clic con el botón derecho del ratón en la carpeta Mesh (Malla) y seleccione Apply Mesh Control (Aplicar control de malla). Aparece el PropertyManager Mesh Control (Control de malla).
 - b) Seleccione la arista del taladro como se muestra en la figura.
 - c) Haga clic en 🖌.
- 13 Trace la tensión en la dirección X. ¿Cuál es la tensión SX máxima?

Respuesta:

14 Calcule el error en la tensión SX normal con la siguiente fórmula:

$$ErrorPercentage = \left(\frac{SX_{Theory} - SX_{SIMULATION}}{SX_{Theory}}\right)100$$

Respuesta:

Hoja de vocabulario de la lección 2

Nombre: Clase: Fecha:

Complete los espacios en blanco con las palabras adecuadas.

- 1 Método que mejora los resultados de la tensión mediante el ajuste automático de la malla en regiones de concentración de tensión:
- 2 Método que mejora los resultados de la tensión aumentando el orden polinómico:
- 3 Tipo de grados de libertad que tiene un nodo de un elemento tetraédrico:
- 4 Tipos de grados de libertad que tiene un nodo de un elemento de vaciado:
- 5 Material con propiedades elásticas iguales en todas las direcciones:
- 6 Tipo de malla adecuado para modelos de gran tamaño:
- 7 Tipo de malla adecuado para modelos delgados:
- 8 El tipo de malla adecuado para modelos con piezas delgadas y de gran tamaño:

Cues

Nombre:	Clase:	Fecha:
Instrucciones: Responda a cad proporcionado.	la pregunta escribiendo la	respuesta correcta en el espacio
¿Cuántos nodos hay en elem	nentos de vaciado de calid	ad alta y de borrador?
2 ¿Requiere el cambio de espe	esor de un vaciado un nue	vo mallado?
¿Cuáles son los métodos ada	aptativos y cuál es la idea	básica para su formulación?
¿Cuál es el beneficio de utili	izar varias configuracione	s en su estudio?
5 ¿Cómo puede crear rápidam partir de un estudio existente	ente un estudio nuevo que e?	e tiene pequeñas diferencias a
Cuando no hay métodos ada confianza en los resultados?	aptativos disponibles, ¿qué	é puede hacer para establecer
¿En qué orden calcula el pro deformaciones unitarias?	ograma las tensiones, los c	lesplazamientos y las