

Engineering Design and Technology Series

An Introduction to Stress Analysis Applications with SolidWorks Simulation, Student Guide

SolidWorks Corporation 300 Baker Avenue Concord, Massachusetts 01742 USA Phone: +1-800-693-9000 Outside the U.S.: +1-978-371-5011 Fax: +1-978-371-7303 Email: info@solidworks.com Web: http://www.solidworks.com/education © 1995-2010, Dassault Systèmes SolidWorks Corporation, a Dassault Systèmes S.A. company, 300 Baker Avenue, Concord, Mass. 01742 USA. All Rights Reserved.

The information and the software discussed in this document are subject to change without notice and are not commitments by Dassault Systèmes SolidWorks Corporation (DS SolidWorks).

No material may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose without the express written permission of DS SolidWorks.

The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of this license. All warranties given by DS SolidWorks as to the software and documentation are set forth in the SolidWorks Corporation License and Subscription Service Agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of such warranties.

Patent Notices for SolidWorks Standard, Premium, Educational, and Professional Products

U.S. Patents 5,815,154; 6,219,049; 6,219,055; 6,603,486; 6,611,725; 6,844,877; 6,898,560; 6,906,712; 7,079,990; 7,184,044; 7,477,262; 7,502,027; 7,558,705; 7,571,079; 7,590,497; 7,643,027; 7,672,822; 7,688,318; 7,694,238, and foreign patents, (e.g., EP 1,116,190 and JP 3,517,643). U.S. and foreign patents pending.

Trademarks and Other Notices for All SolidWorks Products

SolidWorks, 3D PartStream.NET, 3D ContentCentral, PDMWorks, eDrawings, and the eDrawings logo are registered trademarks and FeatureManager is a jointly owned registered trademark of DS SolidWorks.

SolidWorks Enterprise PDM, SolidWorks Simulation, SolidWorks Flow Simulation, and SolidWorks 2010 are product names of DS SolidWorks.

CircuitWorks, Feature Palette, FloXpress, PhotoWorks, TolAnalyst, and XchangeWorks are trademarks of DS SolidWorks.

FeatureWorks is a registered trademark of Geometric Ltd.

Other brand or product names are trademarks or registered trademarks of their respective holders.

COMMERCIAL COMPUTER SOFTWARE - PROPRIETARY

U.S. Government Restricted Rights. Use, duplication, or disclosure by the government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer Software - Restricted Rights), DFARS 227.7202 (Commercial Computer Software and Commercial Computer Software Documentation), and in the license agreement, as applicable.

Contractor/Manufacturer:

Dassault Systèmes SolidWorks Corporation, 300 Baker Avenue, Concord, Massachusetts 01742 USA

Copyright Notices for SolidWorks Standard, Premium, Educational, and Professional Products

Portions of this software © 1990-2010 Siemens Product Lifecycle Management Software III (GB) Ltd.

Portions of this software © 1998-2010 Geometric Ltd.

Portions of this software © 1986-2010 mental images GmbH & Co. KG.

Portions of this software © 1996-2010 Microsoft Corporation. All rights reserved.

Portions of this software © 2000-2010 Tech Soft 3D.

Portions of this software © 1998-2010 3D connexion.

This software is based in part on the work of the Independent JPEG Group. All Rights Reserved.

Portions of this software incorporate PhysXTM by NVIDIA 2006-2010.

Portions of this software are copyrighted by and are the property of UGS Corp. © 2010.

Portions of this software © 2001 - 2010 Luxology, Inc. All Rights Reserved, Patents Pending.

Portions of this software © 2007 - 2010 DriveWorks Ltd.

Copyright 1984-2010 Adobe Systems Inc. and its licensors. All rights reserved. Protected by U.S. Patents 5,929,866; 5,943,063; 6,289,364; 6,563,502; 6,639,593; 6,754,382; Patents Pending.

Adobe, the Adobe logo, Acrobat, the Adobe PDF logo, Distiller and Reader are registered trademarks or trademarks of Adobe Systems Inc. in the U.S. and other countries.

For more copyright information, in SolidWorks see Help > About SolidWorks.

Other portions of SolidWorks 2010 are licensed from DS SolidWorks licensors.

Copyright Notices for SolidWorks Simulation

Portions of this software © 2008 Solversoft Corporation.

PCGLSS © 1992-2007 Computational Applications and System Integration, Inc. All rights reserved.

Portions of this product are distributed under license from DC Micro Development, Copyright © 1994-2005 DC Micro Development, Inc. All rights reserved.

About This Course

The Introduction to Stress Analysis Applications with SolidWorks Simulation and its supporting materials is designed to assist you in learning SolidWorks Simulation in an academic setting.

Online Tutorials

The Introduction to Stress Analysis Applications with SolidWorks Simulation is a companion resource and is supplemented by the SolidWorks Simulation Online Tutorials.

Accessing the Tutorials

To start the Online Tutorials, click **Help, SolidWorks Tutorials, All SolidWorks Tutorials**. The SolidWorks window is resized and a second window will appears next to it with a list of the available tutorials. As you move the pointer over the links, an illustration of the tutorial will appear at the bottom of the window. Click the desired link to start that tutorial.

Conventions

Set your screen resolution to 1280x1024 for optimal viewing of the tutorials.

The following icons appear in the tutorials:

Next Moves to the next screen in the tutorial.

Represents a note or tip. It is not a link; the information is to the right of the icon. Notes and tips provide time-saving steps and helpful hints.

- You can click most toolbar buttons that appear in the lessons to flash the corresponding SolidWorks button. The first time you click the button, an ActiveX control message appears: An ActiveX control on this page might be unsafe to interact_with other parts of the page. Do you want to allow this interaction? This is a standard precautionary measure. The ActiveX controls in the Online Tutorials will <u>not</u> harm your system. If you click **No**, the scripts are disabled for that topic. Click **Yes** to run the scripts and flash the button.
- G Open File or Set this option automatically opens the file or sets the option.
- **Wideo example** shows a video about this step.
- A closer look at... links to more information about a topic. Although not required to complete the tutorial, it offers more detail on the subject.
- Why did I... links to more information about a procedure, and the reasons for the method given. This information is not required to complete the tutorial.

Printing the Tutorials

If you like, you can print the Online Tutorials by following this procedure:

1 On the tutorial navigation toolbar, click **Show**

This displays the table of contents for the Online Tutorials.

2 Right-click the book representing the lesson you wish to print and select **Print** from the shortcut menu.

The Print Topics dialog box appears.

- 3 Select Print the selected heading and all subtopics, and click OK.
- 4 Repeat this process for each lesson that you want to print.

SolidWorks Simulation Product Line

While this course focuses on the introduction to the rigid body dynamics using SolidWorks Motion Simulation, the full product line covers a wide range of analysis areas to consider. The paragraphs below lists the full offering of the SolidWorks Simulation packages and modules.

Static studies provide tools for the linear stress analysis of parts and assemblies loaded by static loads. Typical questions that will be answered using this study type are: Will my part break under normal operating loads? Is the model over-designed? Can my design be modified to increase the safety factor?

Buckling studies analyze performance of the thin parts loaded in compression. Typical questions that will be answered using this study type are:

Legs of my vessel are strong enough not to fail in yielding; but are they strong enough not to collapse due to loss of stability?

Can my design be modified to ensure stability of the thin components in my assembly?

Frequency studies offer tools for the analysis of the natural modes and frequencies. This is essential in the design or many components loaded in both static and dynamic ways. Typical questions that will be answered using this study type are: Will my part resonate under normal operating loads? Are the frequency characteristics of my components suitable for the given application?

Can my design be modified to improve the frequency characteristics?

Thermal studies offer tools for the analysis of the heat transfer by means of conduction, convection, and radiation. Typical questions that will be answered using this study type are:

Will the temperatures changes effect my model? How does my model operate in an environment with temperature fluctuation?

How long does it take for my model to cool down or overheat? Does temperature change cause my model to expand?

Will the stresses caused by the temperature change cause my product failure (static studies, coupled with thermal studies would be used to answer this question)?

Drop test studies are used to analyze the stress of moving parts or assemblies impacting an obstacle. Typical questions that will be answered using this study type are: What will happen if my product is mishandled during transportation or dropped?

How does my product behave when dropped on hard wood floor, carpet or concrete?

Optimization studies are applied to improve (optimize) your initial design based on a set of selected criteria such as maximum stress, weight, optimum frequency, etc. Typical questions that will be answered using this study type are:

Can the shape of my model be changed while maintaining the design intent?

Can my design be made lighter, smaller, cheaper without compromising strength of performance?

Fatigue studies analyze the resistance of parts and assemblies loaded repetitively over long periods of time. Typical questions that will be answered using this study type are: Can the life span of my product be estimated accurately? Will modifying my current design help extend the product life?

Is my model safe when exposed to fluctuating force or temperature loads over long periods of time?

Will redesigning my model help minimize damage caused by fluctuating forces or temperature?

Nonlinear studies provide tools for analyzing stress in parts and assemblies that experience severe loadings and/or large deformations. Typical questions that will be answered using this study type are: Will parts made of rubber (o-rings for example) or foam perform well under given load?

Does my model experience excessive bending during normal operating conditions?

Dynamics studies analyze objects forced by loads that vary in time. Typical examples could be shock loads of components mounted in vehicles, turbines loaded by oscillatory forces, aircraft components loaded in random fashion, etc. Both linear (small structural deformations, basic material models) and nonlinear (large structural deformations, severe loadings and advanced materials) are available. Typical questions that will be answered using this study type are:

Are my mounts loaded by shock loading when vehicle hits a large pothole on the road designed safely? How much does it deform under such circumstances?

Motion Simulation enables user to analyze the kinematic and dynamic behavior of the mechanisns. Joint and inertial forces can subsequently be transferred into SolidWorks Simulation studies to continue with the stress analysis. Typical questions that will be answered using this modulus are:

What is the correct size of motor or actuator for my design? Is the design of the linkages, gears or latch mechanisms optimal?

What are the displacemements, velocities and accelerations of the mechanism components?

Is the mechanism efficient? Can it be improved?

Composites modulus allows users to simulate structures manufactured from laminated composite materials. Typical questions that will be answered using this modulus are: Is the composite model failing under the given loading? Can the structure be made lighter using composite materials while not compromising with the strength and safety? Will my layered composite delaminate?

Lesson 1: Basic Functionality of SolidWorks Simulation

Upon successful completion of this lesson, you will be able to understand the basic functionality of SolidWorks Simulation and perform static analysis of the following assembly.

Active Learning Exercise — Performing Static Analysis

Use SolidWorks Simulation to perform static analysis on the Spider.SLDASM assembly shown to the right.

The step-by-step instructions are given below.

Creating a SimulationTemp directory

We recommend that you save the SolidWorks Simulation Education Examples to a temporary directory to save the original copy for repeated use.

- 1 Create a temporary directory named SimulationTemp in the Examples folder of the SolidWorks Simulation installation directory.
- 2 Copy the SolidWorks Simulation Education Examples directory into the SimulationTemp directory.

Opening the Spider.SLDASM Document

- Click Open *(Constraints)* on the Standard toolbar. The Open dialog box appears.
- 2 Navigate to the SimulationTemp folder in the SolidWorks Simulation installation directory.
- 3 Select Spider.SLDASM
- 4 Click Open.

The spider.SLDASM assembly opens.

	Scantilever	SLDPRT		V I humbhail	
My Recent Documents	Shub.SLDPI	RT			
1	Plate-with	-hole.SLDPRT			
	shart.SLD	DASM			
Desktop	Spider.SLD	JPRT .			
\square					
My Documents					
	File name:	spider.SLDASM	Open -	Configurations	
X	Files of type:	SolidWorks Files (*.sldprt; *.sldasm; *.slddrw) 🗸	Cancel	Default	~
	Description	<none></none>		Display States (linked)	
Favorites				Default_Display State-2	>
Favorites	Description				
Favorites	Description	Quick view / Selective open	References	Do not load hidden components	

The spider assembly has three components: the shaft, hub, and spider leg. The figure below shows the assembly components in exploded view.

Checking the SolidWorks Simulation Menu

If SolidWorks Simulation is properly installed, the SolidWorks Simulation menu appears on the SolidWorks menu bar. If not:

1 Click Tools, Add-Ins.

The **Add-Ins** dialog box appears.

- 2 Check the checkboxes next to SolidWorks Simulation.If SolidWorks Simulation is not in the list, you need to install SolidWorks Simulation.
- 3 Click OK.

The Simulation menu appears on the SolidWorks menu bar.

Setting the Analysis Units

Before we start this lesson, we will set the analysis units.

- 1 On the SolidWorks menu bar click Simulation, Options.
- 2 Click the **Default Options** tab.
- 3 Select English (IPS) under Unit system.
- 4 Select in and psi from the Length/ **Displacement** and **Pressure**/ **Stress** fields, respectively.
- 5 Click OK.

Load/Restraint Mesh Results ⊒ Plot	Unit system SI (MKS) English (IPS) Metric (G)		
Color Chart Default Picks Default Picks Pick1 Pick2 Pick2 Pick3 Pick3 Pick3 Pick1 Pick3 Pick1 Pick3 Pick1 Pick2 Pick3 Pick3 Pick3 Pick3 Pick3 Pick3 Pick4 Pick4 Pick4 Pick4 Pick3 Pick4 Pick4 Pick3 Pick3 Pick4 P	Units Length/Displacement: Temperature: Angular velocity: Pressue/Stress:	In Falvenheit Hetz pri	

Step 1: Creating a Study

The first step in performing analysis is to create a study.

- 1 Click Simulation, Study in the main SolidWorks menu on the top of the screen. The **Study** PropertyManager appears.
- 2 Under Name, type My First Study.
- 3 Under Type, select Static.
- 4 Click OK.

SolidWorks Simulation creates a Simulation study tree located beneath the FeatureManager design tree.

A tab is also created at the bottom of the window for you Model Motion Study 1 1 W My First Study to navigate between multiple studies and your model.

Material properties

Model Type:

Units:

Category.

Description:

Name:

Y

^

Step 2: Assigning Material

All assembly components are made of Alloy Steel.

Material

Select material source

O Custom defined

From library files:

O Use SolidWorks material

solidworks materials

₹E AISI 4340 Steel, normalized

E AISI Type A2 Tool Steel

E ASTM A36 Steel

Steel 3 ≤ Cast Alloy Steel

SE Alloy Steel SE Alloy Steel (SS)

🚰 AISI Type 316L stainless steel

Assign Alloy Steel to All Components

1 In the SolidWorks Simulation Manager tree, right-click the Parts folder and click Apply Material to All.

The Material dialog box appears.

- 2 Under Select material source, do the follo
 - a) S fi
 - S b) 2
 - Alloy Steel. c) (

Note appear in the table to the right.

3 Click OK.

Alloy steel is assigned to all components and a check mark appears on each component's icon. Note that the name of the assigned material appears next to the component's name.

Properties Tables & Curves Fatigue SN Curves Custo

SL

Linear Elastic Isotropic

Max von Mises Stress

Value

0.28

7700

2.1e+011

🔽 🗌 N/mm^2 (MP

Units

N/m^2

ka/m^3 723825600 N/m^2

NA 7.9e+010 N/m^2

irce , do the owing:	Cast Carbon Steel Cast Carbon Steel (SN) Cast Carbon Steel (SN)	Source:
Select From library files.	Chrome Stainless Steel Galvanized Steel Billion Carbon Steel	Property Elastic modulus Poisson's ratio
Select	¥≣ Wrought Stainless Steel ⊕ 19 Iron (5)	Shear modulus Mass density Tensile strength
materials as materi Click the plus sign next	al library. t to the Steel material ca	tegory and select
te: The mechanical and	physical properties of A	Alloy Steel

Step 3: Applying Restraints

We will fix the three holes.

1 Use the **Arrow** keys to rotate the assembly as shown in the figure.

2 In the Simulation study tree, right-click the Fixtures folder and click **Fixed Geometry**.

The Fixture PropertyManager appears.

- 3 Make sure that **Type** is set to **Fixed Geometry**.
- 4 In the graphics area, click the faces of the three holes, indicated in the figure below. Face<1>, Face<2>, and Face<3> appear in the Faces, Edges, Vertices for Fixture box.
- 5 Click 🖌.

Fixed restraint is applied and its symbols appear on the selected faces.

Also, Fixture-1 item appears in the Fixtures folder in the Simulation study tree. The name of the restraint can be modified at any time.

Step 4: Applying Loads

We will apply a 500 lb force normal to the face shown in the figure.

- 1 Click **Zoom to Area** (2) icon on the top of the graphics area and zoom into the tapered part of the shaft.
- 2 In the SolidWorks Simulation Manager tree, right-click the External Loads folder and select **Force**.

The **Force/Torque** PropertyManager appears.

- 3 In the graphics area, click the face shown in the figure.
 - Face<1> appears in the Faces and Shell Edges for Normal Force list box.
- 4 Make sure that **Normal** is selected as the direction.
- **5** Make sure that **Units** is set to **English (IPS)**.
- 6 In the Force Value \bot box, type 500.
- 7 Click 🖌.

SolidWorks Simulation applies the force to the selected face and Force-1 item appears in the External Loads folder.

To Hide Restraints and Loads Symbols

In the SolidWorks Simulation Manager tree, right-click the Fixtures or External Loads folder and click **Hide All**.

Step 5: Meshing the Assembly

Meshing divides your model into smaller pieces called elements. Based on the geometrical dimensions of the model SolidWorks Simulation suggests a default element size (in this case 0.179707 in) which can be changed as needed.

1 In the Simulation study tree, right-click the Mesh icon and select **Create Mesh**.

The **Mesh** PropertyManager appears.

2 Expand Mesh Parameters by selecting the check box.

Make sure that **Standard mesh** is selected and **Automatic transition** is not checked.

Keep default **Global Size** \triangle and **Tolerance** A suggested by the program.

3 Click **OK** to begin meshing.

	Mesh ?
V	×
Mes	h Density 🔗
6	
	Coarse Fine
	Reset
M	lesh Parameters 🛛 🔅
	 Standard mesh
	◯ Curvature based mesh
	in 💌
♠	0.17970709in 🗸 🗘
•A•	0.00898535in 🖌 🗘
	Automatic transition

Step 6: Running the Analysis

In the Simulation study tree, right-click the My First Study icon and click **Run** to start the analysis.

When the analysis completes, SolidWorks Simulation automatically creates default result plots stored in the Results folder.

Step 7: Visualizing the Results

von Mises stress

1 Click the plus sign is beside the Results folder.

All the default plots icons appear.

Note: If no default plots appear, right-click the Results folder and select **Define Stress plot.** Set the options in the PropertyManager and click \checkmark .

2 Double-click Stress1 (-vonMises-) to display the stress plot.

Note: To show the annotation indicating the minimum and the maximum values in the plot, double-click the legend and check **Show min annotation** and **Show max annotation** check boxes. Then click

Animating the Plot

1 Right-click Stress1 (-vonMises-) and click Animate.

The Animation PropertyManager appears and the animation starts automatically.

- 2 Stop the animation by clicking the **Stop** button **I**. The animation must be stopped in order to save the AVI file on the disk.
- 3 Check **Save as AVI File**, then click to browse and select a destination folder to save the AVI file.
- 4 Click **•** to **Play** the animation.

The animation is played in the graphics area.

- 5 Click **I** to **Stop** the animation.
- 6 Click 🛷 to close the Animation PropertyManager.

Animation ?				
✓ X				
Basics 🕆				
5				
34				
✓ Save as A¥I file 🔅				
Options				
C:\Program Files\SolidWorks (; 🛛				
View with Media player				

Visualizing Resultant Displacements

1 Double-click Displacement1
 (-Res disp-) icon to display the
 resultant displacement plot.

Is the Design Safe?

The **Design Check Wizard** can help you answer this question. We will use the wizard to estimate the factor of safety at every point in the model. In the process, you will need to select a yielding failure criterion.

1 Right-click the Results folder and select **Define Factor of Safety Plot**.

Factor of Safetywizard Step 1 of 3 PropertyManager appears.

2 Under Criterion 皆, click Max von Mises stress.

Note: Several yielding criteria are available. The von Mises criterion is commonly used to check the yielding failure of ductile materials.

3 Click 🕣 Next.

Design Check wizard Step 2 of 3 PropertyManager appears.

- 4 Set Units [to psi.
- 5 Under Set stress limit to, select Yield strength.

Note: When material yields, it continues to deform plastically at a quicker rate. In extreme case it may continue to deform even if the load is not increased.

- 6 Click Next.
 Design Check wizard Step 3 of 3 PropertyManager appears.
- 7 Select Areas below factor of safety and enter 1.
- 8 Click \checkmark to generate the plot.

Exactor of Safety ? ✓ X	
Step 3 of 3 Factor of safety distribution • Areas below factor of safety 1	
Safety result Based on the maximum von M Factor of safety: 6.38061	

隆 Fa	nctor	of Safety	?					
~ :	×		9 🕄					
Step	2 of 3	3	~					
E	psi		~					
	Set stress limit to							
 Yield strength 								
🔘 Ultimate strength								
	OUs	er defined						
		1						
	Multiplication factor							
		1						
Beam	Resul	ts:						
	Ø	Show combined on Beams	stress					
Shell	Result	s:						
		Minimum	~					
Mater	rial inv	olved						
	Alloy	Steel						
	Yield	strength: 4.6 psi						
	Ultim 1049	ate strength: 182 psi						

Inspect the model and look for unsafe areas shown in red color. It can be observed that the plot is free from the red color indicating that all locations are safe.

How Safe is the Design?

1 Right-click the Results folder and select **Define Design Check Plot.**

Design Check wizard **Step 1 of 3** PropertyManager appears.

- 2 In the Criterion list, select Max von Mises stress.
- 3 Click Next.

Design Check wizard **Step 2 of 3** PropertyManager appears.

4 Click Next.

Design Check wizard **Step 3 of 3** PropertyManager appears.

- 5 Under Plot results, click Factor of safety distribution.
- FOS 10.00 2.92.0 2.84.0 2.76.0 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.519 2.519 2.519 2.979 2.198 1.118 6.38

6 Click 🧹.

The generated plot shows the distribution of the factor of safety. The smallest factor of safety is approximately 6.4.

Note: A factor of safety of 1.0 at a location means that the material is just starting to yield. A factor of safety of 2.0, for example, means that the design is safe at that location and that the material will start yielding if you double the loads.

Saving All Generated Plots

1 Right-click My First Study icon and click Save all plots as JPEG files.

The Browse for Folder window appears.

- 2 Browse to the directory where you want to save all result plots.
- 3 Click OK.

Generating a Study Report

The **Report** utility helps you document your work quickly and systematically for each study. The program generates structured Internet-ready reports (HTML files) and Word documents that describe all aspects related to the study.

1 Click **Simulation**, **Report** in the main SolidWorks menu on the top of the screen.

The **Report Options** dialog box appears.

The **Report format settings** section allows you to select a report style and choose sections that will be included in the generated report. You may exclude some of the sections by moving them from the **Included sections** field to the **Available** field.

- 2 Each report section can be customized. For example, select the Cover Page section under Included sections and fill the Name, Logo, Author and the Company fields. Note that the acceptable formats for the logo files are JPEG Files (*.jpg), GIF Files (*.gif), or Bitmap Files (*.bmp).
- 3 Highlight Conclusion in the Included Sections list and enter conclusion of your study in the Comments box.

Report Options		×
Current	t report format: Default	
Report format set	ttings	
Report	style: Contemporary	
Available se	ections: Included sections:	
	Description Assumptions Sudy Properties Units Kernel Properties Material Properties Kernel Remove	
Section propertie	es	
Name:	Cover Page	
Comments:		
🗹 لل go:	Browse	
Author:		
Company:		
· · L		
Document setting	15	
Report path:	C:\Program Files\SolidWorks (2)\COSMOSWorks\C Browse	
Report name:	enider-My Einst Study-1	
Roporchame.	appeor by the searcy a	
Show rep	port on publish	
Publish	i as: OHTML 💿 Word	
Publish	Apply Cancel Help	

- 4 Select the Show report on Publish check box and the Word option.
- 5 Click Publish.

The report opens in your word document.

Also, the program creates an icon 📔 in the Report folder in the SolidWorks Simulation Manager tree.

To edit any section of the report, right-click the report icon and click **Edit Definition**. Modify the section and click **OK** to replace the existing report.

Step 8: Save Your Work and Exit SolidWorks

- 1 Click 🖩 on the Standard toolbar or click **File**, **Save**.
- 2 Click **File**, **Exit** on the main menu.

5 Minute Assessment

1	How do you start a SolidWorks Simulation session?
2	What do you do if SolidWorks Simulation menu is not on the SolidWorks menu bar?
3	What types of documents can SolidWorks Simulation analyze?
4	What is analysis?
5	Why is analysis important?
6	What is an analysis study?
7	What types of analysis can be perfomed in SolidWorks Simulation?
8	What does static analysis calculate?
9	What is stress?
10	What are the main steps in performing analysis?
11	How can you change the material of a part?
12	The Design Check wizard shows a factor of safety of 0.8 at some locations. Is your design safe?

Projects — Deflection of a Beam Due to an End Force

Some simple problems have exact answers. One of these problems is a beam loaded by force at its tip as shown in the figure. We will use SolidWorks Simulation to solve this problem and compare its results with the exact solution.

Tasks

1 Open the

Front_Cantilever.sldprt file located in the Examples folder of the SolidWorks Simulation installation directory.

- 2 Measure the width, height, and length of the cantilever.
- **3** Save the part to another name.
- 4 Create a **Static** study.
- **5** Assign **Alloy Steel** to the part. What is the value of the elastic modulus in psi?

Answer:

- 6 Fix one of the end faces of the cantilever.
- 7 Apply a downward force to the upper edge of the other end face with magnitude of 100 lb.
- 8 Mesh the part and run the analysis.
- **9** Plot the displacement in the Y-direction. What is the maximum Y-displacement at the free end of the cantilever?

Answer:

10 Calculate the theoretical vertical displacement at the free end using the following formula:

$$UY_{Theory} = \frac{4FL^3}{Ewh^3}$$

where F is the force, L is the length of the beam, E is the modulus of elasticity, w and h are the width and height of the beam, respectively.

Answer:

11 Calculate the error in the vertical displacement using the following formula:

$$ErrorPercentage = \left(\frac{UY_{Theory} - UY_{COSMOS}}{UY_{Theory}}\right)100$$

Answer:

Lesson 1 Vocabulary Worksheet

Name	Class: Date:	
Fill in the blanks with the proper we	ords.	
1 The sequence of creating a mode testing it:	l in SolidWorks, manufacturing a p	cototype, and
2 A <i>what-if</i> scenario of analysis typ	e, materials, restraints, and loads: _	
3 The method that SolidWorks Sim	ulation uses to perform analysis:	
4 The type of study that calculates	displacements, strains, and stresses	·
5 The process of subdividing the m	odel into small pieces:	_
6 Small pieces of simple shapes cre	eated during meshing:	_
7 Elements share common points c	alled:	
8 The force acting on an area divid	ed by that area:	
9 The sudden collapse of slender de	esigns due to axial compressive loa	ds:
10 A study that calculates how hot a	design gets:	
11 A number that provides a general	description of the state of stress:	
12 Normal stresses on planes where	shear stresses vanish:	
13 The frequencies that a body tends	s to vibrate in:	
14 The type of analysis that can help	you avoid resonance:	

Lesson 1 Quiz

Directions: Answer each question by writing the correct answer or answers in the space provided.

- 1 You test your design by creating a study. What is a study?
- 2 What types of analyses can you perform in SolidWorks Simulation?
- **3** After obtaining the results of a study, you changed the material, loads, and/or restraints. Do you have to mesh again?_____

- 4 After meshing a study, you changed the geometry. Do you need to mesh the model again?
- 5 How do you create a new static study?
- 6 What is a mesh?
- 7 In an assembly, how many icons you expect to see in the Solids folder?

Lesson 1: Basic Functionality of SolidWorks Simulation

Lesson 2: Adaptive Methods in SolidWorks Simulation

Upon successful completion of this lesson, you will be able to (a) use adaptive methods to improve accuracy of the results and (b) apply symmetry restraints to analyze a quarter of your original model.

You will calculate the stresses of a 20 in x 20 in x 1 in square plate with a 1 inch radius hole at its center. The plate is subjected to a 100 psi tensile pressure.

You will compare the stress concentration at the hole with known theoretical results.

Active Learning Exercise — Part 1

Use SolidWorks Simulation to perform static analysis on the Plate-with-hole. SLDPRT part shown to the right.

You will calculate the stresses of a 20 in x 20 in x 1 in square plate with a 1 inch radius hole at its center. The plate is subjected to a 100 psi tensile pressure.

You will compare the stress concentration at the hole with known theoretical results.

The step-by-step instructions are given below.

Creating Simulationtemp directory

We recommend that you save the SolidWorks Simulation Education Examples to a temporary directory to save the original copy for repeated use.

- 1 Create a temporary directory named Simulationtemp in the Examples folder of the SolidWorks Simulation installation directory.
- 2 Copy the SolidWorks Simulation Education Examples directory into the Simulationtemp directory.

Opening the Plate-with-hole.SLDPRT Document

- 1 Click **Open** *in the Standard toolbar. The Open dialog box appears.*
- 2 Navigate to the Simulationtemp folder in the SolidWorks Simulation installation directory.
- 3 Select Plate-with-hole.SLDPRT.
- 4 Click Open.

The Plate-with-hole.SLDPRT part opens.

Notice that the part has two configurations: (a) Quarter plate, and (b) Whole plate. Make sure that Whole plate configuration is active.

Note: The configurations of the document are listed under the ConfigurationManager tab at the top of the left pane.

Checking the SolidWorks Simulation Menu

If SolidWorks Simulation is addedin, the SolidWorks Simulation menu appears on the SolidWorks menu bar. If not:

1 Click Tools, Add-Ins.

The Add-Ins dialog box appears.

2 Check the checkboxes next to SolidWorks Simulation.

If SolidWorks Simulation is not in the list, you need to install SolidWorks Simulation.

3 Click OK.

The SolidWorks Simulation menu appears on the SolidWorks menu bar.

Setting the Analysis Units

Before we start this lesson, we will set the analysis units.

- 1 Click Simulation, Options.
- 2 Click the **Default Options** tab.
- **3** Select **English (IPS)** in **Unit system** and **in** and **psi** as the units for the length and stress, respectively.
- 4 Click 🖌.

Step 1: Creating a Study

The first step in performing analysis is to create a study.

- Click Simulation, Study in the main SolidWorks menu on the top of the screen. The Study PropertyManager appears.
- 2 Under Name, type Whole plate.
- 3 Under Type, select Static.
- 4 Click 🧹.

SolidWorks Simulation creates a Simulation study tree located beneath the FeatureManager design tree.

Step 2: Assigning Material

Assign Alloy Steel

1 In the SolidWorks Simulation Manager tree, right-click the Plate-with-hole folder and click Apply Material to All.

The Material dialog box appears.

- 2 Under Select material source, do the following:
 - a) Select From library files.
 - b) Select

solidworks materials as material library.

c) Click the plus sign next to the Steel material category and select Alloy Steel.

Note: The mechanical and physical properties of Alloy Steel appear in the table to the right.

3 Click OK.

Select material source			Properties	Tables	& Curves	Fatigue SN Curv	es Cust
Use SolidWorks mat Custom defined	enal		Materia	I properti	es		
From library files:	solidworks materials	~	Model	Туре:	Linear El	astic Isotropic	
\$∃ AISI 4340	Steel, normalized	^					
AISI Type	316L stainless steel A2 Tool Steel		Linite:		CI		
AIST MA3	S Steel		Oriits.		51		1000 Z (M
Alloy Steel		Category: Steel		Steel			
₹E Alloy Stee	(SS)		Name:		Alloy Ste	el	
Sectors Cast Alloy	Steel on Steel		Descri	ption:			
E Cast Carb	on Steel (SN)		Source	e:	-		
Cast Stain	less Steel		Defaul criterio	t failure n:	Max von	Mises Stress	6
Enlone S.	d Steel		Property			Value	Units
📒 Plain Carb	on Steel		Elastic n	nodulus		2.1e+011	N/m^2
📒 Stainless S	Steel (ferritic)		Poisson	s ratio		0.28	NA
E Wrought 9	itainless Steel	1	Shear m	iodulus		7.9e+010	N/m^2
- (F)			Mass de	ensity		7700	kg/m^3

Step 3: Applying Restraints

You apply restraints to prevent the out of plane rotations and free body motions.

1 Press spacebar and select ***Trimetric** in the **Orientation** menu.

The model orientation is as shown in the figure.

2 In the Simulation study tree, right-click the Fixtures folder and click **Advanced Fixtures**.

The **Fixture** PropertyManager appears.

- 3 Make sure that **Type** is set to **Use Reference Geometry**.
- 4 In the graphics area, select the 8 edges shown in the figure.

Edge<1> through Edge<8> appear in the **Faces**, **Edges**, **Vertices for Restraint** box.

- 5 Click in the Face, Edge, Plane, Axis forDirection box and select Plane1 from the flyout FeatureManager tree.
- 6 Under Translations, select Along plane Dir 2 \t
- 7 Click 🖌.

The restraints are applied and their symbols appear on the selected edges.

Also, a restraint icon 🛫 (Fixture-1) appears in the Fixtures folder.

Similarly, you follow steps 2 to 7 to apply restraints to the vertical set of edges as shown in the figure to restrain the 8 edges **Along plane Dir 1** of **Plane1**.

To prevent displacement of the model in the global Z-direction, a restraint on the vertex shown in the figure below must be defined.

1 In the SolidWorks Simulation Manager tree, rightclick the Fixtures folder and click Advanced Fixtures.

The **Fixture** PropertyManager appears.

- 2 Make sure that **Type** is set to **Use reference** geometry.
- 3 In the graphics area, click the vertex shown in the figure.

Vertex<1> appears in the Faces, Edges, Vertices for Restraint box.

- 4 Click in the Face, Edge, Plane, Axis for Direction box and select Plane1 from the flyout FeatureManager tree.
- 5 Under Translations, select Normal to Plane **S**.
- 6 Click 🖌.

Step 4: Applying Pressure

You apply a 100 psi pressure normal Face 3 to the faces as shown in the figure.

1 In the SolidWorks Simulation Manager tree, right-click the External Loads folder and click **Pressure**.

The **Pressure** PropertyManager appears.

- 2 Under Type, select Normal to selected face.
- 3 In the graphics area, select the four faces as shown in the figure.

Face<1> through Face<4> appear in the **Faces for Pressure** list box.

- 4 Make sure that **Units** is set to **English (psi)**.
- 5 In the **Pressure value** box \coprod , type **100**.
- 6 Check the **Reverse direction** box.
- 7 Click 🖌.

SolidWorks Simulation applies the normal pressure to the selected faces and Pressure-1 icon \coprod appears in the External Loads folder.

To Hide Restraints and Loads Symbols

In the SolidWorks Simulation Manager tree, right-click the Fixtures or External Loads folder and click **Hide All**.

Step 5: Meshing the Model and Running the Study

Meshing divides your model into smaller pieces called elements. Based on the geometrical dimensions of the model SolidWorks Simulation suggests a default element size which can be changed as needed.

1 In the SolidWorks Simulation Manager tree, right-click the Mesh icon and select **Create Mesh**.

The Mesh PropertyManager appears.

2 Expand Mesh Parameters by selecting the check box.

Make sure that **Standard mesh** is selected and **Automatic transition** is not checked.

- **3** Type **1.5** (inches) for **Global Size** \triangle and accept the **Tolerance** \triangle suggested by the program.
- 4 Check Run (Solve) the analysis under Options and click 🖌.

Note: To see the mesh plot, right-click Mesh folder and select Show Mesh

Step 6: Visualizing the Results

Normal Stress in the global X-direction.

- 1 Right-click the Results folder 🛅 and select **Define Stress Plot**. The **Stress Plot** PropertyManager appears.
- 2 Under **Display**
 - a) Select SX: X Normal stress in the Component field.
 - b) Select **psi** in **Units**.
- 3 Click 🖌 .

The normal stress in the X-direction plot is displayed.

Notice the concentration of stresses in the area around the hole.

Step 7: Verifying the Results

The maximum normal stress σ_{max} for a plate with a rectangular cross section and a central circular hole is given by:

$$\sigma max = k \cdot \left(\frac{P}{t(D-2r)}\right) \qquad \qquad k = 3.0 - 3.13 \left(\frac{2r}{D}\right) + 3.66 \left(\frac{2r}{D}\right)^2 - 1.53 \left(\frac{2r}{D}\right)^3$$

where:

D = plate width = 20 in r = hole radius = 1 in t = plate thickness = 1 in

P = Tensile axial force = Pressure * (D * t)

The analytical value for the maximum normal stress is $\sigma_{max} = 302.452$ psi

The SolidWorks Simulation result, without using any adaptive methods, is SX = 253.6 psi.

This result deviates from the theoretical solution by approximately 16.1%. You will soon see that this significant deviation can be attributed to the coarsness of the mesh.

Active Learning Exercise — Part 2

In the second part of the exercise you will model a quarter of the plate with help of the symmetry restraints.

Note: The symmetry restraints can be used to analyze a portion of the model only. This approach can considerably save the analysis time, particularly if you are dealing with large models.

Symmetry conditions require that geometry, loads, material properties and restraints are equal across the plane of symmetry.

Step 1: Activate New Configuration

- 1 Click the ConfigurationManager tab [.
- 2 In the **Configuration Manager** tree doubleclick the Quarter plate icon.

The Quarter plate configuration will be activated.

3 The model of the quarter plate appears in the graphics area.

Note: To access a study associated with an inactive configuration right-click its icon and select **Activate SW** configuration.

Step 2: Creating a Study

The new study that you create is based on the active Quarter plate configuration.

1 Click **Simulation**, **Study** in the main SolidWorks menu on the top of the screen.

The **Study** PropertyManager appears.

- 2 Under Name, type Quarter plate.
- 3 Under Type, select Static.
- 4 Click 🖌.

SolidWorks Simulation creates a representative Tree for the study located in a tab at the bottom of the screen.

Step 3: Assigning Material

Follow the procedure described in Step 2 of Part 1 to assign Alloy Steel material.

Step 4: Applying Restraints

You apply restraints on the faces of symmetry.

- 1 Use the **Arrow** keys to rotate the model as shown in the figure.
- 2 In the Simulation study tree, right-click the Fixtures folder and select Advanced Fixtures.

The **Fixtures** PropertyManager appears.

- 3 Set Type to Symmetry.
- 4 In the graphics area, click the Face 1 shown in the figure.

Face<1> appears in the Faces, Edges, Vertices for Restraint box.

5 Click 🖌.

Similarly, apply **Symmetry** restraint to Face 2.

Next you restraint the upper edge of the plate to prevent the displacement in the global Z-direction.

To restraint the upper edge:

1 In the SolidWorks Simulation Manager tree, right-click the Fixtures folder and select **Advanced Fixtures**.

Set Type to Use reference geometry.

2 In the graphics area, click the upper edge of the plate shown in the figure.

Edge<1> appears in the Faces, Edges, Vertices for Restraint box.

- 3 Click in the Face, Edge, Plane, Axis for Direction box and select Plane1 from the flyout FeatureManager tree.
- 4 Under Translations, select Normal to plane ∑.
 Make sure the other two components are deactivated.
- 5 Click 🖌.

After applying all restraints, three restraint icons: $\cancel{fixture-1}$, $\cancel{fixture-2}$, and $\cancel{fixture-3}$ appear in the Fixtures folder.

Step 5 Applying Pressure

You apply a 100 psi pressure as shown in the figure below:

1 In the SolidWorks Simulation Manager tree, right-click External Loads and select **Pressure**.

The **Pressure** PropertyManager appears.

- 2 Under Type, select Normal to selected face.
- **3** In the graphics area, select the face shown in the figure.
- 1 Face<1> appears in the Faces for Pressure list box.
- 2 Set Units 📘 to psi.
- 3 In the **Pressure value** box \blacksquare , type **100**.
- 4 Check the **Reverse direction** box.
- 5 Click 🖌.

SolidWorks Simulation applies the normal pressure to the selected face and Pressure-1 icon \coprod appears in the External Loads folder.

Step 6 Meshing the Model and Running the Analysis

Apply the same mesh settings following the procedure described in Step 5 of Part 1, Meshing the Model and Running the Study on page 2-7. Then **Run** the analysis.

The mesh plot is as shown in the figure.

Step 7 Viewing Normal Stresses in the Global X- Direction

- 1 In the Simulation study tree, right-click the Results folder 🛅 and select **Define** Stress Plot.
- 2 In the Stress Plot PropertyManager, under Display:
 - a) Select **SX:X Normal stress.**
 - b) Select **psi** in **Units**.
- 3 Under Deformed Shape select True Scale.
- 4 Under **Property**:
 - a) Select Associate plot with name view orientation.
 - b) Select ***Front** from the menu.
- 5 Click 🖌.

The normal stress in the X-direction is displayed on the real deformed shape of the plate.

Step 8 Verifying the Results

For the quarter model, the maximum normal SX stress is 269.6 psi. This result is comparable to the results for the whole plate.

This result deviates from the theoretical solution by approximately 10.8%. As was mentioned in the conclusion of Part 1 of this lesson, you will see that this deviation can be attributed to the coarsness of the computational mesh. You can improve the accuracy by using a smaller element size manually or by using automatic adaptive methods.

In Part 3 you will use the h-adaptive method to improve the accuracy.

Active Learning Exercise — Part 3

In the third part of the exercise you will apply the h-adaptive method to solve the same problem for the Quarter plate configuration.

To demonstrate the power of the h-adaptive method, first, you will mesh the model with a large element size, and then you will observe how the h-method changes the mesh size to improve the accuracy of the results.

Step 1 Defining a New Study

You will create a new study by duplicating the previous study.

1 Right-click the Quarter plate study at the bottom of the screen and select **Duplicate**.

The Define Study Name dialog box appears.

- 2 In the **Study Name** box, type H-adaptive.
- **3** Under **Configuration to use**: select **Quarter plate.**
- 4 Click OK.

Step 2 Setting the h-adaptive Parameters

- 1 In the Simulation study tree, right-click H-adaptive and select **Properties.**
- 2 In the dialog box, in the **Options** tab, select **FFEPlus** under **Solver**.
- 3 In the Adaptive tab, under Adaptive method, select h-adaptive.
- 4 Under h-Adaptive options, do the following:
 - a) Move the Target accuracy slider to 99%.
 - b) Set Maximum no. of loops to 5.
 - c) Check Mesh coarsening.
- 5 Click OK.

Note:	By duplicating the study, all the
	folders of the original study are
	copied to the new study. As long
	as the properties of the new study
	remain the same, you do not need
	to redefine material properties,
	loads, restraints, etc.

atic	
Adaptive Flow/Thermal Effects Remark Adaptive method	
 None ♦ h-adaptive ▶ p-adaptive 	
h-Adaptive options	
Low High Target accuracy:	
Local (Faster) Global (Slower) Accuracy bias:	
Maximum no. of loops 5 \$	
p-Adaptive options	
Stop when Total Strain Energy 💉 change is 1 % or less	
Update elements with relative Strain Energy error of 2 % or more	
Starting p-order	
Maximum p-order 5	
Maximum no. of loops	
OK Cancel Apply	Help

	Delete All Simulaton Studies
	Create New Motion Study Create New Simulation Study
<i>≱</i> ¥ 0	uarter plate
fine Study Na	me 🛛 🔀
itudy Name :	
H-adaptive	
Configuration to use	e:
Quarter plate	v

Cancel

Help

ΟK

Rename

Delete

Step 3: Remeshing the Model and Running the Study

1 In the SolidWorks Simulation Manager tree, right-click the Mesh folder and select **Create Mesh**.

A warning message appears stating that remeshing will delete the results of the study.

2 Click OK.

The Mesh PropertyManager appears

3 Type **5.0** (inches) for **Global Size** A and accept the **Tolerance** A suggested by the program.

This large value for the global element size is used to demonstrate how the h-adaptive method refines the mesh to get accurate results.

- 4 Click \checkmark . The image above shows the initial coarse mesh.
- 5 Right-click the **H-adaptive** icon and select **Run**.

Step 4: Viewing Results

With the application of the h-adaptive method the original mesh size is reduced. Notice the transition of the mesh size from a coarser mesh (plate boundaries) to a finer mesh at the location of the central hole.

To view the converted mesh, right-click the Mesh icon and select **Show Mesh**.

View normal stress in the global X-direction

In the SolidWorks Simulation Manager tree, double-click the **Stress2 (X-normal)** plot in the Results folder **b**.

The analytical value for the maximum normal stress is σ_{max} = 302.452 psi.

The SolidWorks Simulation result with the application of the h-adaptive method is SX = 322.4 psi, which is closer to the analytical solution (approximate error: 6.6%).

Note: The desired accuracy set in the study properties (in your case 99%) does not mean that the resulting stresses will be within the maximum error of 1%. In finite element method measures other than stresses are used to evaluate the accuracy of the solution. However, it can be concluded that as the adaptive algorithm refines the mesh, the stress solution becomes more accurate.

Step 9 Viewing Convergence Graphs

- 1 In the Simulation study tree, right-click the Results folder 🛅 and select **Define** Adaptive Convergence Graph.
- In the PropertyManager, check all options and click
 The convergence graph of all checked quantities is displayed.

Note: To further improve the accuracy of the solution, it is possible to continue with the h-adaptivity iterations by initiating subsequent study runs. Each subsequent study run uses the final mesh from the last iteration of the previous run as the initial mesh for the new run. To try this **Run** the H-adaptive study again.

5 Minute Assessment

- 1 If you modify material, loads or restraints, the results get invalidated while the mesh does not, why?
- 2 Does changing a dimension invalidate the current mesh?
- **3** How do you activate a configuration?
- 4 What is a rigid body motion?_____
- 5 What is the h-adaptive method and for what study type can it be used?
- **6** What is the advantage of using h-adaptive to improve the accuracy compared to using mesh control?

7 Does the number of elements change in iterations of the p-adaptive method?

Projects — Modeling the Quarter Plate with a Shell Mesh

Use shell mesh to solve the quarter plate model. You will apply mesh control to improve the accuracy of the results.

Tasks

- 1 Click **Insert, Surface, Mid Surface** in the main SolidWorks menu on the top of the screen.
- **2** Select the front and back surfaces of the plate as shown.
- 3 Click OK.
- 4 Create a **Static** study.
- 5 Expand the Plate-with-hole folder, right-click the SolidBody and select **Exclude from Analysis**.
- 6 In the FeatureManager design tree, expand the Solid Bodies folder and hide the existing solid body.
- 7 Define 1 in (Thin formulation) shell. To do this:
 - a) Right-click the SurfaceBody in the Platewith-hole folder of the Simulation study tree and select **Edit Definition**.

- b) In the Shell Definition PropertyManager, select in and type 1 in for Shell thickness.
- c) Click 🖌.
- 8 Assign Alloy Steel to the shell. To do this:
 - a) Right-click the Plate-with-hole folder and select **Apply Material to All**.
 - b) Select From library files and select the Alloy Steel material.
 - c) Click 🖌.
- **9** Apply symmetry restraints to the two edges shown in the figure.

Note: For a shell mesh, it is sufficient to restrain one edge instead of the face.

- a) Right-click the Fixtures folder and select Advanced Fixtures.
- b) In the **Faces**, **Edges**, **Vertices for Restraint** field select the edge indicated in the figure.
- c) In the Face, Edge, Plane, Axis for Direction field select Plane3.
- d) Restraint the Normal to Plane translation and Along Plane Dir 1 and Along Plane Dir 2 rotations.
- e) Click 🖌.

10 Using the identical procedure apply a symmetry restraint to the other edge shown in the figure. This time use Plane2 feature for Face, Edge, Plane, Axis for Direction field.

- 11 Apply 100 psi Pressure to the edge shown in the figure.
 - a) Right-click the External Loads folder and select **Pressure**.
 - b) Under Type select Use reference geometry.
 - c) In the **Faces**, **Edges for Pressure** field select the vertical edge shown in the figure.
 - d) In the **Face, Edge, Plane, Axis for Direction** field select the edge indicated in the figure.
 - e) Specify 100 psi in the Pressure Value dialog.
 - f) Click 🖌.
- **12** Apply mesh control to the edge shown in the figure.Using a smaller element size improves the accuracy.

- **13** Mesh the part and run the analysis.
- 14 Plot the stress in the X-direction. What is the maximum SX stress? Answer:
- 15 Calculate the error in the normal SX stress using the following formula:

$$ErrorPercentage = \left(\frac{SX_{Theory} - SX_{COSMOS}}{SX_{Theory}}\right)100$$

Answer:

Lesson 2 Vocabulary Worksheet

Name	Class:	Date:
1 Julio	Ciubb.	Dute.

Fill in the blanks with the proper words.

- 1 A method that improves stress results by refining the mesh automatically in regions of stress concentration:
- 2 A method that improves stress results by increasing the polynomial order:
- **3** The type of degrees of freedom that a node of a tetrahedral element has:
- 4 The types of degrees of freedom that a node of a shell element has:
- **5** A material with equal elastic properties in all directions:
- 6 The mesh type appropriate for bulky models:
- 7 The mesh type appropriate for thin models:
- 8 The mesh type appropriate for models with thin and bulky parts:

N	ame:Class:Date:
D pi	irections: Answer each question by writing the correct answer or answers in the space rovided.
1	How many nodes are there in draft and high quality shell elements?
2	Does changing the thickness of a shell require remeshing?
3	What are adaptive methods and what is the basic idea for their formulation?
4	What is the benefit in using multiple configurations in your study?
5	How can you quickly create a new study that has small differences from an existing study?
6	When adaptive methods are not available, what can you do to build confidence in the results?
7	In which order does the program calculate stresses, displacements, and strains?
8	In an adaptive solution, which quantity converges faster: displacement, or stress?